

Compiled and issued by: The Southern African Grain Laboratory NPC

Grain Building - Agri-Hub Office Park 477 Witherite Street The Willows Pretoria SOUTH AFRICA

> PostNet Suite # 391 Private Bag X 1 **The Willows**

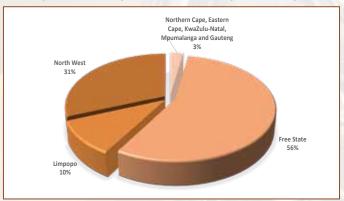
0041

Tel: +27 (12) 807 4019 Fax: +27(12) 807 4160 E-mail: info@sagl.co.za Website: www.sagl.co.za

	Page 1-2
Introduction	1 - 2
Provincial contribution to the production of the 2022/23 crop (Graph 1)	1
Production	2 - 5
World Sunflower Seed Supply and Disappearance (Table 1)	2
Sunflower production overview over two seasons (dry land vs irrigation) (Table 2)	3
Total RSA area utilised for sunflower production from 2012/13 to 2022/23 (Graph 2)	4
Sunflower production in RSA from 2012/13 to 2022/23 (Graph 3)	4
RSA sunflower yield from 2012/13 to 2022/23 (Graph 4)	4
Area utilised for sunflower production in the Free State, North West and Limpopo provinces since 2012/12 (Graphs 5, 7 and 9)	5
Sunflower production in the Free State, North West and Limpopo provinces since 2012/13 (Graphs 6, 8 and 10)	5
Supply and Demand	6
Sunflower supply and demand overview current marketing season (Mar 2023 – Jan 2024) (Graph 11)	6
SAGIS Sunflower Supply and Demand Table	7
Sunflower: Supply and demand graphs over 10 marketing seasons (Graphs 12 - 15)	8
SAGIS Import and Export figures	9
SAGIS Oil Seeds Products Manufactured (per month)	10
SAGIS Oil Seeds Products Imported (per month)	11
SAGIS Oil Seeds Products month Exported (per month)	12
RSA Production regions	13
RSA Provinces (Figure 1)	13
RSA Crop Production Regions (Figure 2)	14
List of grain production regions with silo/intake stands and type of storage structure	15 - 17
Sunflower Crop Quality 2022/23 - Summary of results	18 - 22
Average % screenings per province over five seasons (Graph 16)	18

Average % foreign matter per province over five seasons (Graph 17)	19
Average % sclerotia per province over five seasons (Graph 18)	19
Approximation of test weight per province over three seasons (Table 3)	20
Comparison of the test weight per province over five seasons (Graph 19)	20
Average crude protein content per province over five seasons (Graph 20)	21
Average crude fat content per province over five seasons (Graph 21)	21
Average crude fibre content per province over five seasons (Graph 22)	21
Average ash content per province over five seasons (Graph 23)	21
Comparison between crop quality and ARC cultivar trial samples of the 2022/23 season (Table 4)	22
South African Sunflower Crop Quality Averages 2022/23 vs 2021/22 (Table 5)	23
Regional sunflower quality of the 2022/23 season	24 - 30
Fatty Acid Profile	31
Fatty Acid Profile results of a selection of crop quality samples from the 2022/23 season (Table 6)	32
Fatty Acid Profile results of a selection of cultivar samples from the 2022/23 season (Table 7)	33
Fatty Acid Profile results per cultivar from the 2022/23 season (Table 8)	34
Methods	35 - 36
SANAS Certificate and Schedule of Accreditation	37 - 40
Evaluation of sunflower cultivars: 2022/23 season – ARC-Grain Crops Report	41 - 69
Grading Regulations of Sunflower Seed, Government Notice NO. 45 of	70 – 77

Commercial sunflower quality for the 2022/23 Season


Acknowledgements With gratitude to:

- Oilseeds Advisory Committee (OAC) as well as the Oil & Protein Seed Development Trust (OPDT) for its financial support in conducting this survey.
- Agbiz Grain and its members for their cooperation in providing the samples for this survey.
- The Crop Estimates Committee (CEC) of the Department of Agriculture, Land Reform and Rural Development (DALRRD) for providing production related figures.
- South African Grain Information Service (SAGIS) for providing sunflower related supply and demand figures.
- The Bureau for Food and Agricultural Policy (BFAP) for providing research-based market analysis.
- Precision Oil Laboratories for providing Fatty Acid Profile analyses.

Introduction

The final calculated commercial sunflower crop figure of the 2022/23 season as overseen by the National Crop Estimates Liaison Committee (CELC) is 720 000 tons, which is 0.57% less than the final crop estimate figure of 724 110 tons. The crop decreased by almost 15% (125 550 tons) year on year. The major sunflower-producing provinces, namely the Free State and North West, contributed 87% of the total crop.

Graph 1: Provincial contribution to the production of the 2022/23 sunflower crop

Figures provided by the CEC.

During the harvesting season, a representative sample of each delivery of sunflower seed was taken according to the prescribed grading regulations at the various grain intake points. The sampling procedure for the samples used in this survey is described on page 35. One hundred and seventy-four (174) composite sunflower samples, representing the different production regions, were analysed for quality. The samples were graded, milled and analysed for moisture, crude protein, crude fat, crude fibre and ash content. Twenty samples, randomly selected to represent the different production regions, as well as 20 cultivar samples were submitted to Precision Oil Laboratories for fatty acid profile analyses.

This is the eleventh annual sunflower crop quality survey performed by The Southern African Grain Laboratory NPC (SAGL). SAGL was established in 1997 on request of the Grain Industry. SAGL is an ISO 17025 accredited testing laboratory and participates in various proficiency testing schemes, both nationally and internationally, as part of our ongoing quality assurance procedures to demonstrate technical competency and international comparability.

The goal of this crop quality survey is the compilation of a detailed database, accumulating quality data collected over several seasons on the national commercial sunflower crop, which is essential in assisting with decision making processes. The data reveal general tendencies and highlight quality differences in the commercial sunflower seed produced in different production regions nationally.

Results of previous surveys to date are available on the SAGL website (www.sagl.co.za). Reports in an easy to page format, are available to read or download. Hard copy reports are distributed to Directly Affected Groups and interested parties.

In addition to the quality information, production figures (obtained from the Crop Estimates Committee (CEC)) relating to hectares planted, tons produced and yields obtained on a national as well as provincial basis, over an eleven season period, are provided in this report. SAGIS (South African Grain Information Service) supply and demand information is provided in table and graph format. Import and export figures over several seasons as well as information on the manufacture, import and export of oil seeds products, are also included.

The report of the Evaluation of sunflower cultivars for the 2022/23 season, conducted by the ARC-Grain Crops Institute in collaboration with Agricol, Pannar, Pioneer, Syngenta and Limagrain Zaad South Africa, is included in totality and as received. The national grading regulations as published in Government Notice NO. 45 of 22 January 2016 are also provided.

Production

World sunflower seed production for the 2022/23 season stands at 55.2 million metric tons with the Ukraine and Russia contributing 53% to this total. An area of 29.8 million hectares were harvested resulting in a yield of 1.85 metric tons/hectare. The forecasted figure for the 2023/24 season is 56.5 million metric tons harvested on 29.6 million hectares and with a yield of 1.91 metric tons/hectare.

Please see Table 1 for the world sunflower seed supply and disappearance figures.

Table 1: World Sunfle	ower Seed Su	upply and D	isappearand	ce (October	through Sep	tember)
Season	2018/19	2019/20	2020/21	2021/22	2022/23 (Revised)	2023/24 (Forecast)
Area Harvested (1 000 Ha)	27 185	27 413	28 045	29 877	29 801	29 552
Yield (MT/Ha)	1.91	2.03	1.81	1.95	1.85	1.91
Production (1 000 MT)						
Argentina	3 530	3 020	3 200	3 360	4 130	3 600
European Union	9 482	9 469	8 969	10 389	9 520	9 863
China	2 550	2 680	2 750	2 880	2 930	3 000
Russia	12 756	15 379	13 420	15 660	16 600	16 800
Ukraine	15 250	16 500	13 900	16 900	12 400	14 400
United States	956	887	1 353	864	1 276	1 027
South Africa	678	810	678	846	724	830
Turkey	1 530	1 700	1 580	1 750	1 820	1 320
Other	5 292	5 202	4 995	5 652	5 834	5 674
TOTAL	52 024	55 647	50 845	58 301	55 234	56 514
Import (1 000 MT)						
Turkey	1 051	1 058	844	673	981	580
European Union	550	1 057	817	1 807	1 466	896
Other	1 445	1 451	1 308	1 639	1 513	1 571
TOTAL	3 046	3 566	2 969	4 119	3 960	3 047
Export (1 000 MT)						
Argentina	149	214	178	158	91	140
United States	87	64	72	69	64	72
Russia	338	1 278	528	280	285	352
Ukraine	119	76	186	1 793	1 685	640
Other	2 392	1 980	1 907	1 875	1 750	1 806
TOTAL	3 085	3 612	2 871	4 175	3 875	3 010
Oilseed crushed	47 231	50 300	45 568	48 315	52 192	52 586
	onal Sunflower ble updated Jai					

Sunflower seed production is very suitable for South African climatic conditions. Sunflower plants are drought tolerant and thus a crucial risk diversification crop going forward. The deep root system of a sunflower plant enables the plant to perform better than other crops during dry seasons. Planting sunflowers is also advantageous when rainfall occurs late in the season, due to the late planting window relative to that of maize.

The area utilised for sunflower production decreased by 17% to 555 700 ha, compared to the 670 700 ha of the previous season. The national yield average increased by just more than 3% from to 1.26 t/ha in the previous season to 1.30 t/ha this season.

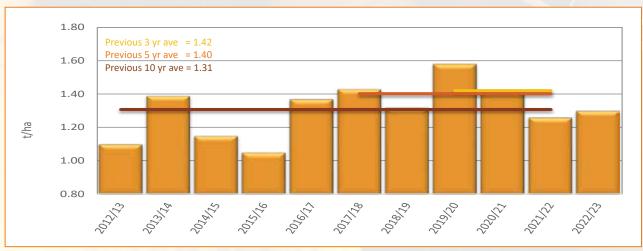
According to *The Bureau for Food and Agricultural Policy (BFAP) Baseline, Agricultural Outlook 2023 – 2032*, an area of 500 000 hectares is expected to be planted to sunflower by 2032. The rising prevalence of *Sclerotinia sclerotiorum* is expected to remain a challenge, adding costs for producers and resulting in some area shifting to soybeans in affected regions. Despite the normalisation in area, production growth is supported by a projected 21% gain in yields over the coming decade, reflecting technological gains and continuous improvement in production practices. This will be sufficient to meet the growth in domestic demand.

The latest seed technology is providing promising results in high-oil content cultivars, without significant compromise in yields per hectare. High oil content cultivars will support the relative competitiveness of local sunflower crushing plants.

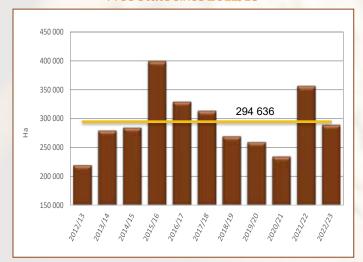
Please see Table 2 for an overview of sunflower production under dry land conditions versus irrigation in the 2022/23 season, compared to the 2021/22 season. Graphs 2 to 4 provide national figures with regards to hectares planted, tonage produced and yields obtained over the last 11 seasons and Graphs 5 to 10 similar figures for the major sunflower producing provinces, namely the Free State and North West as well as Limpopo.

	Table 2	: Sunflower p	roduction ove	erview over	two season	s	
			2022/23			2021/22	
Province	Type of production	Hectares planted, ha	Production, tons	Yield, t/ha	Hectares planted, ha	Production, tons	Yield, t/ha
	Dryland	-	-	-	-	-	-
Western Cape	Irrigation	-	-	-	-	-	-
	Total	-	-	-	-	-	-
	Dryland	-	-	-	-	-	-
Northern Cape	Irrigation	2 500	6 250	2.50	2 500	6 250	2.50
	Total	2 500	6 250	2.50	2 500	6 250	2.50
	Dryland	283 000	385 000	1.36	350 000	483 000	1.38
Free State	Irrigation	7 000	17 000	2.43	7 000	16 800	2.40
	Total	290 000	402 000	1.39	357 000	499 800	1.40
	Dryland	700	1 400	2.00	30	48	1.60
Eastern Cape	Irrigation	-	-	-	270	702	2.60
	Total	700	1 400	2.00	300	750	2.50
KwaZulu-Natal	Dryland	300	600	2.00	-	-	-
KwaZulu-Natal	Irrigation	-	-	-	-	-	-
	Total	300	600	2.00	-	-	-
	Dryland	5 000	7 140	1.43	3 500	5 250	1.50
Mpumalanga	Irrigation	-	-	-	-	-	-
	Total	5 000	7 140	1.43	3 500	5 250	1.50
	Dryland	99 000	72 600	0.73	107 000	72 200	0.67
Limpopo	Irrigation	1 000	2 400	2.40	3 000	4 800	1.60
	Total	100 000	75 000	0.75	110 000	77 000	0.70
	Dryland	2 200	2 860	1.30	2 400	3 000	1.25
Gauteng	Irrigation	-	- 1	-	_	-	_
	Total	2 200	2 860	1.30	2 400	3 000	1.25
	Dryland	152 900	221 250	1.45	193 200	250 500	1.30
North West	Irrigation	2 100	3 500	1.67	1 800	3 000	1.67
	Total	155 000	224 750	1.45	195 000	253 500	1.30
	Dryland	543 100	690 850	1.27	656 130	813 998	1.24
RSA	Irrigation	12 600	29 150	2.31	14 570	31 552	2.17
	Total	555 700	720 000	1.30	670 700	845 550	1.26

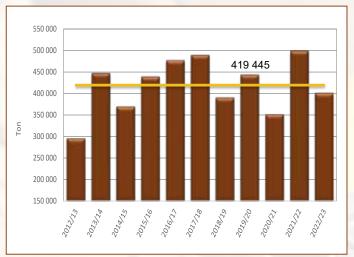
Figures provided by the CEC.


Graph 2: Total RSA area utilised for sunflower production from 2012/13 to 2022/23

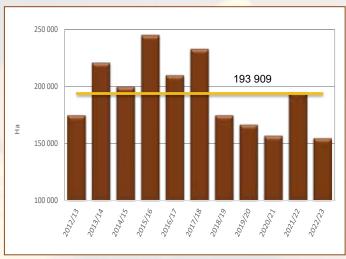
Graph 3: Sunflower production in RSA from 2012/13 to 2022/23

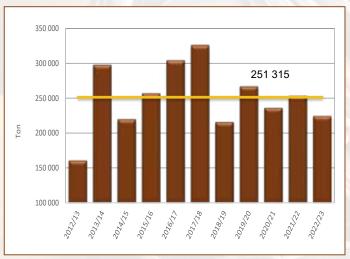


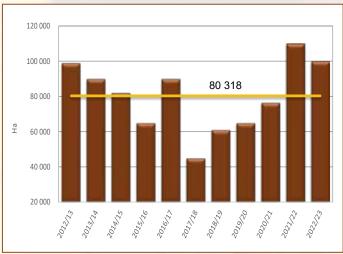
Graph 4: RSA Sunflower yield from 2012/13 to 2022/23



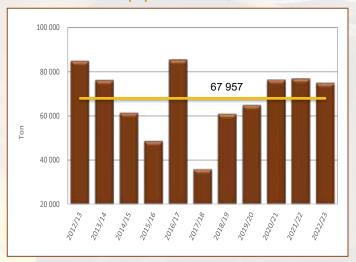
Figures provided by the CEC.


Graph 5: Area utilised for sunflower production in the Free State since 2012/13


Graph 6: Sunflower production in the Free State since 2012/13


Graph 7: Area utilised for sunflower production in North West since 2012/13

Graph 8: Sunflower production in North West since 2012/13

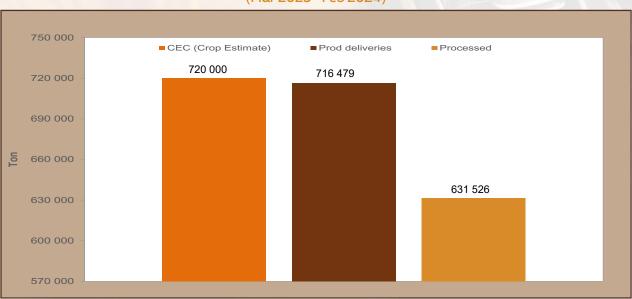


Graph 9: Area utilised for sunflower production in Limpopo since 2012/13

Figures provided by the CEC.

Graph 10: Sunflower production in Limpopo since 2012/13

Eleven season average

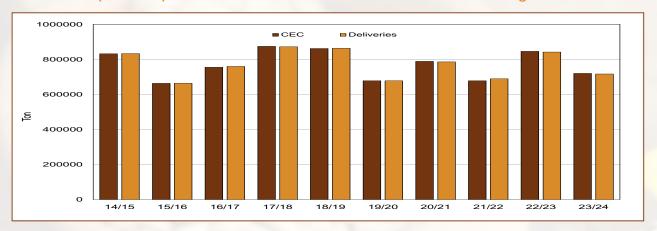

Supply and Demand

The sunflower seed marketing season dates from March to February. According to SAGIS supply and demand figures for the 2023/24 marketing season to date (March 2023 to January 2024), opening stock more than doubled compared to the previous marketing season. It is however still 21% (19 821 tons) lower than the 10-year average.

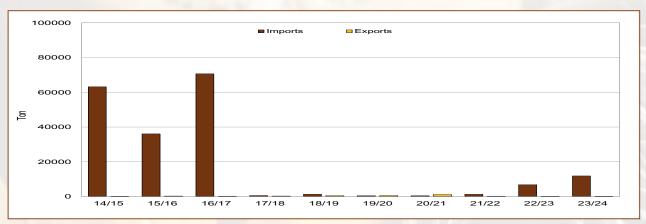
To date, 11 835 tons of sunflower and sunflower seed products have been imported compared to the 6 805 and 1 256 tons of the previous two seasons respectively. The 10-year import average is 27 523 tons. Of the 631 526 tons of sunflower seeds processed so far, only 1 870 tons (0.3%) was used for human consumption and 4 999 tons (0.8%) for animal feed. The vast majority of sunflower seed is crushed to produce oil and oilcake. The amount of sunflower seeds crushed to date is almost 23% less than in the previous season and also 19% lower than the 10-year average of 774 741 tons.

Sunflower and canola are crushed predominantly for the vegetable oil market. Due to the combination of limited consumer spending and sharp price increases, vegetable oil consumption has slowed in recent years. By 2032, total vegetable oil consumption is expected to rise by 22% from 2022 levels, according to *BFAP Baseline*. The biggest share of total use is however attributed to imported palm oil, with imports expected to rise to more than 580 000 tons by 2032. While South Africa's production of soybean, sunflower and canola oil is expected to rise, processing growth is substantially slower than in the past decade and imported oils will therefor still constitute around two thirds of additional vegetable oil consumption in South Africa by 2032 relative to 2022.

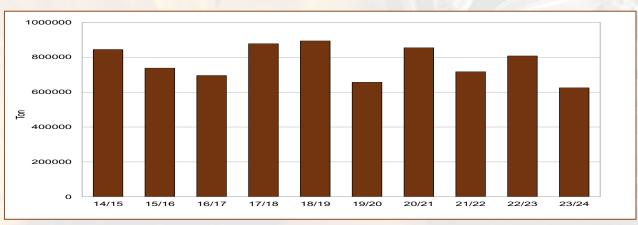
Exports to date amount to only 43 tons, compared to the 170 and 217 tons of the two previous seasons respectively. Globally, Ukraine, followed by Russia, Argentina and the United States were the largest exporters of sunflower seeds during 2022/23. Ukraine (5.4 million metric tons) and Russia (4.2 million metric tons) accounted for 70% of total sunflower oil exports worldwide in the corresponding period (National Sunflower Association website www.sunflowernsa.com, Table updated January 16, 2024; Source: Oil World & USDA).

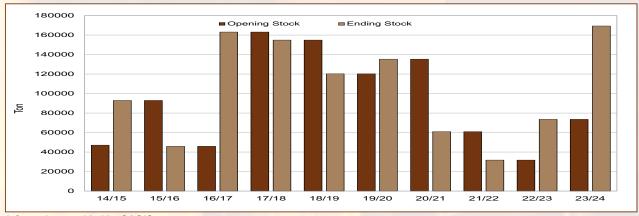

Graph 11: Sunflower supply and demand overview for the current marketing season (Mar 2023 - Feb 2024)

Information provided by SAGIS.


SAGIS South African Grain Information Service SAGIS Suid-Afrikaanse Graan Inligtingsdiens	outh Africalidation	ianse Gre	I Informa kan Inligt	hion Servingsdiens	Ce													
SUNFLOWERSEED: SUPPLY AND DEMAND TABLE BASED ON SAGIS' INFO (TON)	AND DEMA	AND TABLE	BASED ON	I SAGIS' IN	FO (TON)											Publicat	Publication date: 20	2024-02-27
						Seas	Season (Mar - Feb)	eb)									Current Season Mar-Jan	10 Year average
	80/20	60/80	09/10	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	18/19	19/20	20/21	21/22	22/23	23/24	2013/14-2022/23
																	*	Γ
																	11	
CEC (Crop Estimate)	300 000	872 000	801 000	490 000	860 000	522 000	257 000	832 000	000 899	755 000	874 000	862 000	678 000	788 500	678 000	845 550	720 000	753 305
SUPPLY																		
Opening stock (1 Mar)	90 400	64 700	164 300	157 200	18 800	109 000	81 302	47 116	92 927	45 867	163 086	154 841	120 165	135 325	60 964	31 790	73 517	93 338
Prod deliveries	310 100	846 600	806 900	477 300	866 300	534 251	542 165	833 165	699 899	759 614	872 171	863 184	677 674	785 567	689 083	841 784	716 479	752 808
Imports	8 900	25 600	45 300	62 400	10 800	11 737	94 475	63 180	36 064	70 643	554	1 324	457	471	1 256	6 805	11 835	27 523
Surplus	1 500	4 100	700	2 000	3 800	5 485	4 689	5 948	9 897	4 268	12 173	6 863	6 520	7 200	9 306	11 241	2 856	7 811
Total Supply	410 900	941 000	1 017 200	006 869	002 668	660 473	722 631	949 409	802 557	880 392	1 047 984	1 026 212	804 816	928 563	609 092	891 620	804 687	881 479
															ļ			
DEMAND																		
Processed	009 688	008 389	847 200	671 500	782 200	572 519	666 551	847 682	747 808	707 327	885 039	900 042	664 027	861 295	724 949	815 258	631 526	781 998
-human	2 100	2 400	1 900	1 600	1 300	904	1 162	467	1 003	1 192	1 487	1 609	1 478	1 652	1 556	1 656	1 870	1 326
-animal feed	009ε	3 400	3 300	3 100	2 900	3 022	2 777	2 893	8 995	10 665	5 737	5 114	5 511	5 432	6 1 2 9	8509	4 999	5 931
-crush (oil and oilcake)	006 EEE	009 629	842 000	008 999	778 000	568 593	662 612	844 322	737 810	695 470	877 815	893 322	657 038	854 211	717 264	807 544	624 657	774 741
Withdrawn by producers	1 900	4 900	2 700	1 700	3 500	2 521	2 524	1 068	1 157	909	442	519	783	464	329	392	103	831
Released to end-consumers	000ε	2 800	4 800	4 100	3 700	3 154	2 923	2 799	2 936	2 867	2 592	1 764	1 023	1 144	999	106	157	1 882
Seed for planting purposes	1 800	3 300	2 700	1 700	2 500	2 700	2 903	3 804	2 824	3 474	3 026	3 582	2 447	2 493	2 495	1 775	3 286	2 882
Net receipts(-)/disp(+)	0	1 000	- 400	1 000	- 1 200	- 1 716	909	1 081	1 709	2 828	1 770	- 378	635	1 063	133	402	274	985
Deficit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exports	0	79 400	0	100	0	27	8	48	256	205	274	515	929	1 140	217	170	43	341
Total Demand	346 200	776 700	860 000	680 100	790 700	579 205	675 515	856 482	756 690	717 306	893 143	906 047	669 491	867 599	728 819	818 103	635 389	788 920
Ending Stock (28 Feb)	64 700	164 300	157 200	18 800	109 000	81 268	47 116	92 927	45 867	163 086	154 841	120 165	135 325	60 964	31 790	73 517	169 298	92 560
- processed p/month	28 300	57 100	70 600	65 000	65 200	47 700	55 546	70 640	62 317	58 944	73 753	75 004	55 336	71 775	60 412	67 938	57 411	65 167
- months' stock	2.3	2.9	2.2	0.3	1.7	1.7	0.8	1.3	0.7	2.8	2.1	1.6	2.4	0.8	0.5	1.1	2.9	-

Note: *** Figures for current season up to date


Graph 12: Sunflower: CEC Estimate vs SAGIS deliveries over 10 marketing seasons


Graph 13: Sunflower: Imports and Exports over 10 marketing seasons

Graph 14: Sunflower: Crushed over 10 marketing seasons

Graph 15: Sunflower: Opening and closing stock over 10 marketing seasons

Information provided by SAGIS.

					WHC	LE SUNFLO	OWER: IMP	ORTS FOR RSA	PER COUNT	RY (TONS)				
Season	Argentina	Botswana	Brazil	Bulgaria	China	Egypt	Malawi	Mozambique	Romania	Ukraine	United Kingdom	Zambia	Zimbabwe	Total
2014/15	42	4 764	0	0	0	0	574	0	57 800	0	0	0	0	63 180
2015/16	80	4 518	0	0	0	0	663	0	30 531	0	0	272	0	36 064
2016/17	42	1 424	0	38 434	0	0	686	0	30 015	19	23	0	0	70 643
2017/18	21	0	0	0	18	44	429	19	0	0	23	0	0	554
2018/19	65	381	0	0	0	23	855	0	0	0	0	0	0	1 324
2019/20	44	0	0	0	0	23	390	0	0	0	0	0	0	457
2020/21	87	0	20	0	0	90	274	0	0	0	0	0	0	471
2021/22	43	1 003	0	3	0	184	23	0	0	0	0	0	0	1 256
2022/23	66	6 564	0	0	0	0	175	0	0	0	0	0	0	6 805
2023/24	22	11 753	0	0	0	44	10	0	0	0	0	0	6	11 835

		SUI	NFLOWER: IMPORTS	PER HARBOUR (TO	NS)	
Season			Harbours			
	East London	Durban	Cape	Port Elizabeth	Richards Bay	Total
2014/15	0	57 842	0	0	0	57 842
2015/16	0	30 611	0	0	0	30 611
2016/17	0	68 533	0	0	0	68 533
2017/18	0	44	62	0	0	106
2018/19	0	88	0	0	0	88
2019/20	0	67	0	0	0	67
2020/21	0	132	65	0	0	197
2021/22	0	135	95	0	0	230
2022/23	0	66	0	0	0	66
2023/24*	0	66	0	0	0	66

*Progressive March 2023 - January 2024 Note: Includes Imports for RSA and Other Countries

Season			WHOLE S	UNFLOWER: RSA EX	PORTS PER COUNT	RY (TONS)		
Season	Australia	Botswana	Mauritius	Namibia	Eswatini	Uganda	Zimbabwe	Total
2014/15	22	0	0	0	26	0	0	48
2015/16	0	10	0	158	88	0	0	256
2016/17	0	40	0	48	107	0	10	205
2017/18	0	23	0	136	115	0	0	274
2018/19	0	10	0	360	145	0	0	515
2019/20	0	95	0	341	140	0	0	576
2020/21	0	24	0	304	192	54	566	1 140
2021/22	0	35	0	65	117	0	0	217
2022/23	0	35	4	50	81	0	0	170
2023/24	0	0	0	1	42	0	0	43

		SUI	NFLOWER: EXPORTS	PER HARBOUR (TO	NS)	
Season			Harbours			
	East London	Durban	Cape	Port Elizabeth	Richards Bay	Total
2014/15	0	22	0	0	0	22
2015/16	0	0	0	0	0	0
2016/17	0	0	0	0	0	0
2017/18	0	0	0	0	0	0
2018/19	0	0	0	0	0	0
2019/20	0	0	0	0	0	0
2020/21	0	0	0	0	0	0
2021/22	0	0	0	0	0	0
2022/23	0	4	0	0	0	4
2023/24*	0	0	0	0	0	0

^{*}Progressive March 2023 - January 2024

SAGIS South African Grain Information Service NPC Suid Afrikaanse Graaninligtingsdiens NWM Reg no. 1997/019186/08

				OIL SEE	L SEEDS PRODUCTS MANUFACTURED (PER MONTH)	S MANUFACT	URED (PER M	ONTH)					Date publis	Date published: 2024/03/01
	Marketing year Mar 2021 - Feb 2022 Progressive: 12 Months	Marketing year Mar 2022 - Feb 2023 Progressive: 12 Months	Mar 2023 Tons	Apr 2023 Tons	May 2023 Tons	June 2023 Tons	July 2023 Tons	Aug 2023 Tons	Sep 2023 Tons	Oct 2023 Tons	Nov 2023 Tons	Dec 2023 Tons	Jan 2024 Tons	Marketing year Mar 2023 - Feb 2024 Progressive: 11 Months (Mar - Jan)
Palm Oil and Derivatives	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean Oil	261 757	287 762	16 333	25 539	31 452	26 154	26 649	28 821	27 603	25 141	27 359	21 170	26 183	282 404
Sunflower Oil	263 060	295 476	12 798	21 475	31 272	24 863	26 496	25 732	23 192	19 190	18 447	17 215	16 878	237 558
Coconut Oil/ Groundnut Oil / Canola Oil / Corn (Maize) Oil / Blends or mixes of Oils which includes one of the above Oils / Biodiesel / Cottonseed Oil	68 734	67 862	7 215	7 803	5 780	6 975	4 565	6 521	7 272	6 449	7 207	6 905	6 457	73 149
Sunflower Oilcake	300 155	319 018	12 573	21 412	32 773	26 355	27 359	28 724	25 168	21 638	19 689	17 286	17 856	250 833
Coconut Oilcake	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palmnut Oilcake	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean Oilcake / Canola Oil- cake / Cottonseed Oilcake	1 237 766	1 379 161	83 133	119 005	145 729	125 039	124 519	135 594	133 476	122 091	128 776	101 467	122 823	1 341 652
Soybean Flours and Meals / Textured Vegetable Protein	41 078	41 726	4 154	3 312	4 344	4 518	4 344	4 043	4 870	4 760	4 465	2 899	4 071	45 780
Soybean Fullfat	169 604	173 986	14 194	13 396	15 399	15 828	16 462	15 859	11 998	10 952	10 582	9 934	10 146	144 750
Peanut Butter and Paste	33 700	30 519	2 082	2 406	3717	3 115	2 390	3 025	2 673	2 856	1878	1 967	2 138	28 247
Total	2 375 854	2 595 510	152 482	214 348	270 466	232 847	232 784	248 319	236 252	213 077	218 403	178 843	206 552	2 404 373

SAGIS south African Grain Information Service NPC Suid Afrikaanse Graaninligtingsdiens NWM Reg no. 1997/019186/08

				OIL	SEEDS PRODI	UCTS IMPORT	OIL SEEDS PRODUCTS IMPORTED (PER MONTH)	TH)					Date publis	Date published: 2024/03/01
	Marketing year Mar 2021 - Feb 2022 Progressive: 12 Months	Marketing year Mar 2022 - Feb 2023 Progressive: 12 Months	Mar 2023 Tons	Apr 2023 Tons	May 2023 Tons	June 2023 Tons	July 2023 Tons	Aug 2023 Tons	Sep 2023 Tons	Oct 2023 Tons	Nov 2023 Tons	Dec 2023 Tons	Jan 2024 Tons	Marketing year Mar 2023 - Feb 2024 Progressive: 11 Months (Mar - Jan)
Palm Oil and Derivatives	524 513	495 285	41 627	43 561	46 814	46 092	46 927	45 459	51 516	48 623	39 625	28 575	31 888	470 707
	68 481	52 125	2 974	4 672	6 653	1 020	1 509	3 811	11 871	6 0 2 3	1 026	221	882	40 698
	107 808	125 929	10 088	5 376	15 820	5 038	10 025	9 521	45 505	20 229	30 055	16 358	1 258	169 273
Coconut Oil/ Groundnut Oil / Canola Oil / Corn (Maize) Oil / Blends or mixes of Oils which includes one of the above Oils / Biodiesel / Cottonseed Oil	10 035	5 537	755	103	163	129	211	650	197	284	307	302	321	3 422
	55 684	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean Oilcake / Canola Oil- cake / Cottonseed Oilcake	408 986	181 566	33 610	1 441	27 864	401	1 570	1 034	777	209	1 121	797	888	70 012
Soybean Flours and Meals / Textured Vegetable Protein	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peanut Butter and Paste	1 563	1 969	387	299	63	69	82	129	99	612	1 437	18	245	3 407
	1 177 070	862 411	89 441	55 452	97 377	52 749	60 324	60 604	109 932	76 316	73 571	46 271	35 482	757 519

South African Grain Information Service NPC	Suid Afriƙaanse Graaninligtingsdiens NWM	Reg no. 1997/019186/08
	つ て う	

				OIL	SEEDS PRODI	OIL SEEDS PRODUCTS EXPORTED (PER MONTH)	TED (PER MON	ITH)					Date publi	Date published: 204/03/01
	Marketing year Mar 2021 - Feb 2022 Progressive: 12 Months	Marketing year Mar 2022 - Feb 2023 Progressive: 12 Months	Mar 2023 Tons	Apr 2023 Tons	May 2023 Tons	June 2023 Tons	July 2023 Tons	Aug 2023 Tons	Sep 2023 Tons	Oct 2023 Tons	Nov 2023 Tons	Dec 2023 Tons	Jan 2024 Tons	Marketing year Mar 2023 - Feb 2024 Progressive: 11 Months (Mar - Jan)
Palm Oil and Derivatives	14 421	11 505	1 235	839	789	1 384	937	866	1 198	982	1 204	618	1 159	11 338
Soybean Oil	53 889	46 201	8 905	6 260	12 108	10 470	8 225	7 187	3 808	4 929	1 052	536	4 580	090 89
Sunflower Oil	2 971	9 330	314	258	948	412	404	471	452	809	671	501	1 541	6 580
Coconut Oil Groundnut Oil / Canola Oil / Corn (Maize) Oil / Blends or mixes of Oils which includes one of the above Oils / Biodiesel / Cottonseed Oil	12 559	13 624	2 493	772	2 426	1 525	882	377	708	514	1 298	345	1 303	12 643
Sunflower Oilcake	1 755	0	0	0	0	0	0	0	0	0	0	0	0	0
Coconut Oilcake	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Palmnut Oilcake	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soybean Oilcake / Canola Oil- cake / Cottonseed Oilcake	18 052	10 404	192	584	810	554	629	1 356	1 407	696	1 256	1 250	1 046	10 083
Soybean Flours and Meals / Textured Vegetable Protein	21 019	23 619	1 787	1 056	1 329	692	629	1 666	1 419	1 193	2 469	1 105	2 130	15 562
Soybean Fullfat	3 450	0	0	0	0	0	0	0	0	0	0	0	0	0
Peanut Butter and Paste	240	212	23	17	13	20	16	15	21	26	6	16	17	193
Total	128 356	114 895	14 949	9 2 8 6	18 423	15 134	11 762	12 065	9 013	9 221	7 959	4 371	11 776	124 459

RSA Production Regions

The RSA is divided into 9 provinces as illustrated in Figure 1.

Figure 1: RSA Provinces

Regional map with gratitude to SiQ.

The 9 provinces are divided into 36 grain production regions.

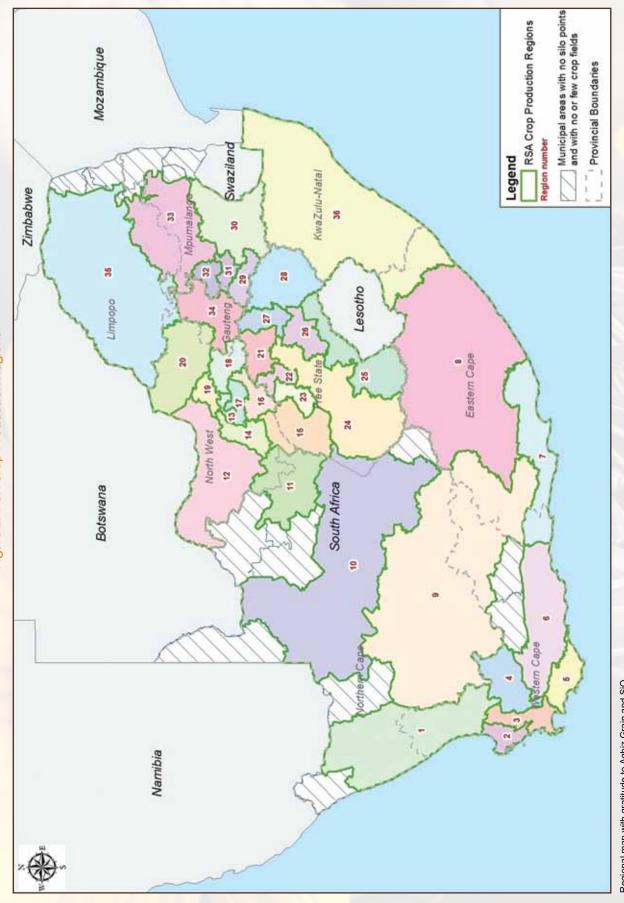
The regions are distributed as follows:

Region 1: Namakwaland Regions 2 to 4: Swartland Regions 5 and 6: Rûens

Regions 7 and 8: Eastern Cape

Region 9: Karoo

Region 10: Griqualand West


Region 11: Vaalharts

Regions 12 to 20: North West Regions 21 to 28: Free State Regions 29 to 33: Mpumalanga

Region 34: Gauteng Region 35: Limpopo Region 36: KwaZulu-Natal

Please see the Crop Production Regions map on the next page.

The production regions from which sunflower samples have been received for the crop quality survey of the 2022/23 production season, are named and described on pages 15 to 17. All the silo/intake stands as well as the type of storage structure, situated in a particular region, are provided.

Regional map with gratitude to Agbiz Grain and SiQ.

Grain Production Regions Silo/Intake stands per region indicating type of storage structure

	Region 12: No	orth West Western Region	on
NWK	Blaauwbank (Bins)	NWK	Mareetsane (Bins)
NWK	Bührmannsdrif (Bins)	Senwes	Kameel (Bins)
NWK	Kameel (Bins)	Senwes	Vryburg (Bins)
	Region 13: North W	est Central Region (San	nieshof)
NWK	Biesiesvlei (Bins)	NWK	Oppaslaagte (Bins)
NWK	Bossies (Bins)	NWK	Sannieshof (Bins)
NWK	Gerdau (Bins)		
	Region 14: No	orth West Southern Regi	on
NWK	Barberspan (Bins)	NWK	Taaibospan (Bins)
NWK	Delareyville (Bins)	Senwes	Amalia (Bins)
NWK	Excelsior (Bins)	Senwes	Hallatshope (Bins)
NWK	Geysdorp (Bins)	Senwes	Migdol (Bins)
NWK	Migdol (Bins)	Senwes	Schweizer-Reneke (Bins)
NWK	Nooitgedacht (Bins)		
	Region 16: North	West Central Eastern R	egion
Senwes	Bamboesspruit (Bins)	Senwes	Regina (Bins)
Senwes	Klerksdorp (Bins)	Senwes	Strydpoort (Bins)
Senwes	Leeudoringstad (Bins)	Senwes	Wolmaranstad (Bins)
Senwes	Makwassie (Bins)		
	Region 17: North West	Central-Northern Regio	n (Ottosdal)
NWK	Boschpoort (Bags/Bins/Bulk)	NWK	Vermaas (Bins)
NWK	Kleinharts (Bins)	Senwes	Hartbeesfontein (Bins)
	Otto - del (Dine)	0	Mollindora (Pina)
NWK	Ottosdal (Bins)	Senwes	Melliodora (Bins)
NWK NWK	Ottosdai (Bins) Rostrataville (Bins)	Senwes	Werda (Bins)
	Rostrataville (Bins)		Werda (Bins)
	Rostrataville (Bins)	Senwes	Werda (Bins)
NWK	Rostrataville (Bins) Region 18: North We	Senwes	Werda (Bins)
NWK	Rostrataville (Bins) Region 18: North We Bodenstein (Bins)	Senwes est Central Region (Vent	Werda (Bins) ersdorp) Makokskraal (Bins)
NWK NWK	Region 18: North We Bodenstein (Bins) Coligny (Bins)	Senwes est Central Region (Vent Senwes Senwes	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins)
NWK NWK NWK Senwes	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins)	Senwes est Central Region (Vent Senwes Senwes	Werda (Bins) Bersdorp) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins)
NWK NWK NWK Senwes	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins)	Senwes est Central Region (Vent Senwes Senwes Senwes	Werda (Bins) Bersdorp) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins)
NWK NWK Senwes Senwes	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Wo	Senwes est Central Region (Vent Senwes Senwes Senwes	Werda (Bins) tersdorp) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins)
NWK NWK NWK Senwes Senwes	Region 18: North We Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North We Lichtenburg (Bunkers)	Senwes est Central Region (Vent Senwes Senwes Senwes Senwes Nest Central Region (Lich	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins)
NWK NWK Senwes Senwes Afgri NWK	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Wo Lichtenburg (Bunkers) Grootpan (Bins)	Senwes est Central Region (Ventors Senwes Senwes Senwes Senwes est Central Region (Lich NWK NWK	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins) Lusthof (Bins)
NWK NWK Senwes Senwes Afgri NWK	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Wo Lichtenburg (Bunkers) Grootpan (Bins) Halfpad (Bins) Hibernia (Bins)	Senwes est Central Region (Ventors Senwes S	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK Senwes Senwes Afgri NWK	Region 18: North Wo Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Wo Lichtenburg (Bunkers) Grootpan (Bins) Halfpad (Bins) Hibernia (Bins)	Senwes est Central Region (Ventors Senwes S	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK Senwes Senwes Afgri NWK NWK	Region 18: North Wood Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Wood Lichtenburg (Bunkers) Grootpan (Bins) Halfpad (Bins) Hibernia (Bins)	Senwes est Central Region (Vent Senwes Senwes Senwes est Central Region (Lich NWK	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK Senwes Senwes Afgri NWK NWK NWK	Region 18: North Websile Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Region 19: North Websile Buckingham (Bins) Hibernia (Bins) Hibernia (Bins) Hibernia (Bins) Region 20: Nebsile Battery (Bins)	Senwes est Central Region (Ventor Senwes Se	Werda (Bins) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) tenburg) Lottie Halte (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins) Mon

Grain Production Regions Silo/Intake stands per region indicating type of storage structure

	Region 21: Free State	North-Western Region (Vi	
Senwes	Attie (Bins)	Senwes	Vierfontein (Bins)
Senwes	Groenebloem (Bins)	Senwes	Viljoenskroon (Bins)
Senwes	Heuningspruit (Bins)	Senwes	Vredefort (Bins)
Senwes	Koppies (Bins)	Senwes	Weiveld (Bins)
Senwes	Rooiwal (Bins)		
	Region 22: Free Sta	te North-Western Region (Bothaville)
Senwes	Allanrigde (Bins)	Senwes	Schoonspruit (Bins)
Senwes	Bothaville (Bins)	Senwes	Schuttesdraai (Bins)
Senwes	Mirage (Bins)	Suidwes	Misgunst (Bunkers)
Senwes	Odendaalsrus (Bins)		
	Region 23: Free Stat	e North-Western Region (l	Bultfontein)
Senwes	Bultfontein (Bins)	Senwes	Tierfontein (Bins)
Senwes	Losdoorns (Bins)	Senwes	Wesselsbron (Bins)
Senwes	Protespan (Bins)	Senwes	Willemsrus (Bins)
	Region 24	: Free State Central Regio	n
Senwes	Bloemfontein (Bins)	Senwes	Petrusburg (Bins)
Senwes	Bradfort (Bins)	Senwes	Theunissen (Bins)
Senwes	De Brug (Bins)	Senwes	Van Tonder (Bins)
Senwes	Geneva (Bins)	Senwes	Welgeleë (Bins)
Senwes	Hennenman (Bins)	Senwes	Winburg (Bins)
Senwes	Kroonstad (Bins)		
	Region 25: Fro	ee State South-Western Re	egion
Afgri	Bethlehem (Bins)	OVK	Marseilles (Bins)
Afgri	Slabberts (Bins)	OVK	Modderpoort (Bins)
OVK	Clocolan (Bins)	OVK	Tweespruit (Bins)
OVK	Ficksburg (Bins)	OVK	Westminster (Bins)
OVK	Fouriesburg (Bins)	Senwes	Dewetsdorp (Bins)
	Region 26: Fr	ee State South-Eastern Re	egion
Afgri	Kaallaagte (Bins)	Afgri	Monte Video (Bins)
Afgri	Libertas (Bins)	Afgri	Senekal (Bins)
Afgri	Marquard (Bins)	Senwes	Arlington (Bins)
Afgri	Meets (Bins)	Senwes	Steynsrus (Bins)
	Region 27:	Free State Northern Region	on
Senwes	Gottenburg (Bins)	Senwes	Mooigeleë (Bins)
Senwes	Heilbron (Bins)	Senwes	Wolwehoek (Bins)
Senwes	Hoogte Grainlink (Bins)	VKB	Petrus Steyn (Bins)

Grain Production Regions Silo/Intake stands per region indicating type of storage structure

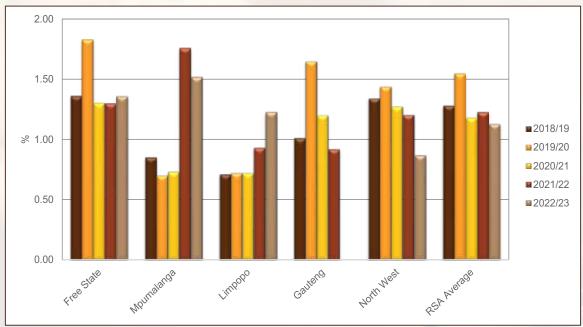
	Region 28: Free	State Eastern Regi	ion
Afgri	Afrikaskop (Bins/Bunkers)	VKB	Jim Fouché (Bins)
Afgri	Eeram (Bins)	VKB	Memel (Bins)
Afgri	Harrismith (Bins)	VKB	Reitz (Bins)
Afgri	Kransfontein (Bins/Bunkers)	VKB	Tweeling (Bins)
VKB	Ascent (Bins)	VKB	Villiers (Bins/Bulk)
VKB	Cornelia (Bins)	VKB	Vrede (Bins)
VKB	Daniëlsrus (Bins)	VKB	Warden (Bins)
VKB	Frankfort (Bins)	VKB	Windfield (Bins)
	Region 29: Mpuma	ılanga Southern Re	egion
Afgri	Balfour (Bins)	Afgri	Leeuspruit (Bins)
Afgri	Greylingstad (Bins)	Afgri	Platrand (Bins)
Afgri	Grootvlei (Bins)	Afgri	Standerton (Bins)
Afgri	Harvard (Bins)	Afgri	Vaaldrift (Bunkers)
Afgri	Holmdene (Bins)	Afgri	Val (Bins)
	Region 30: Mpum	alanga Eastern Re	gion
Afgri	Amersfoort (Bins)	Afgri	Morgenzon (Bins)
Afgri	Carolina (Bins)	Afgri	Overvaal (Bins)
Afgri	Davel (Bins)	Afgri	Sandspruit (Bunkers)
Afgri	Eerstelingsfontein (Bunker)	Afgri	Hendriksvallei (Bunkers)
Afgri	Ermelo (Bins)	BKB	Waterval (Bunkers)
Afgri	Estancia (Bins)	TWK	Mkondo (Bins)
Afgri	Lothair (Bins)	TWK	Panbult (Panbult)
Afgri	Maizefield (Bins)		1
	Region 31: Mpum	alanga Central Reg	gion
Afgri	Bakenlaagte (Bunkers)	Afgri	Kortlaagte (Bins)
Afgri	Bethal (Bins)	Afgri	Leslie (Bins)
Afgri	Brakfontein (Bunkers)	Afgri	Palmietfontein (Bunkers)
Afgri	Devon (Bin)	Afgri	Trichardt (Bins)
Afgri	Kinross (Bins/Bunkers)	Afgri	Vaalkrantz (Bunkers)
	Region 33: Mpuma	alanga Northern Re	egion
Afgri	Arnot (Bins)	Afgri	Middelburg (Bins)
Afgri	Driefontein (Bins)	Afgri	Pan (Bins)
Afgri	Lydenburg (Bins)	Afgri	Stoffberg (Bins)
Afgri	Marble Hall (Bins)	Afgri	Wonderfontein (Bins)
	Region 35:	Limpopo Region	
Afgri	Northam (Bins)	VKB	Nylstroom (Modimolle) (Bins)
VKB	Alma (Bins)	VKB	Potgietersrus (Mokopane) (Bins)
VKB	Lehau (Bins)	VKB	Roedtan (Bins)
VKB	Naboomspruit (Mookgophong) (Bins)	VKB	Settlers (Bins)
VKB	Nutfield (Bins)	VKB	Warmbad (Bela-Bela) (Bins)

Sunflower Crop Quality 2022/23 -Summary of results

Eighty-three percent (145) of the 174 samples analysed for the purpose of this survey were graded as Grade FH1, with 29 (17%) of the samples downgraded to COSF (Class Other Sunflower Seed). The percentage of samples graded FH1 increased compared to the previous season's 75%. The ten-year weighted average of the percentage samples graded as FH1 is 79%.

The grading results of the 29 samples downgraded to COSF can be summarised as follows:

- Percentage screenings exceeding the maximum permissible deviation of 4% was present in eight samples.
- Percentage sclerotia from the fungus *Sclerotinia sclerotiorum* exceeding the maximum permissible deviation of 4% was present in two samples.
- Percentage foreign matter exceeding the maximum permissible deviation of 4% was present in five samples.
- Percentage collective deviations exceeding the maximum permissible deviation of 6% was present in 14 samples.
- Poisonous seeds (*Datura sp.*) exceeding the maximum permissible number of 1 per 1000 g were present in eleven samples.
- One sample was downgraded due to the presence of a musty odour and another due to the presence of a musty and sour odour.
- Eleven of the 29 samples downgraded to COSF were as a result of a combination of two or more of the above mentioned deviations.


The samples from the Free State province (N = 64) reported the highest average percentage screenings namely 1.78%, followed by Limpopo (N = 17) and North West (N = 82) with 1.61% and 1.44% respectively. Mpumalanga (N = 11) reported the lowest percentage screenings of 1.03%. The weighted national average was 1.55% compared to the 2.20% of the previous season.

Graph 16: Average percentage screenings per province over five seasons

The highest weighted average percentage foreign matter (1.52%) was reported for the samples from the Mpumalanga regions. The Free State and Limpopo followed with 1.36% and 1.23% respectively. The lowest percentage was found in North West (0.87%). The national average was 1.13% compared to the 1.23% and 1.18% of the previous two seasons. Please see Graph 17.

Graph 17: Average percentage foreign matter per province over five seasons

The percentage samples received for this survey that contained sclerotia from the fungus *Sclerotinia sclerotiorum* decreased from 70% in the previous season to 22% this season. The current season's 22% equals that of the 2020/21 season. 62% of the samples containing sclerotia this season originated in North West province, 28% in the Free State and 10% in Mpumalanga.

Two of the samples received exceeded the maximum permissible deviation of 4% for sclerotia. The highest percentage reported was 4.30% originating in the Free State, followed by 4.08% originating in North West. The national average of 0.12% is the second lowest of the past six seasons.

1.80
1.60
1.40
1.20
1.00
8 0.80
0.80
0.60
0.40
0.20
0.00

Free State

Markagara and a continuous free state in the property of the the prop

Graph 18: Average percentage sclerotia per province over five seasons

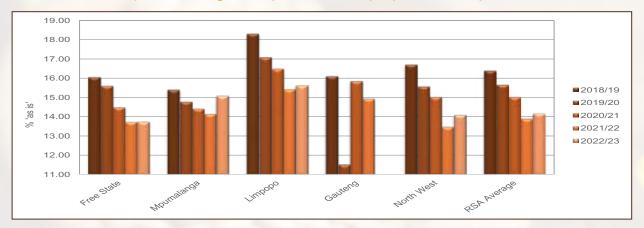
Test weight does not form part of the grading regulations for sunflower seed in South Africa. An approximation of the test weight of South African sunflower seed is provided in Table 3 for information purposes. The standard working procedure of the Kern 222 instrument, as described in ISO 7971-3:2019, was followed. The g/1 L filling mass of the sunflower seed samples was determined and divided by two. The test weight was then extrapolated by means of the following formulas obtained from the Test Weight Conversion Chart for Sunflower Seed, Oil of the Canadian Grain Commission: y = 0.1936x + 2.2775 (138 to 182 g/0.5 L) and y = 0.1943x + 2.1665 (183 to 227 g/0.5 L). Please also see Graph 19 for a comparison of the test weight per province over the last five seasons.

Tal	ble 3: Appr	oximation o	of test we	ight per pro	ovince ove	three se	asons		
				Test	weight, kg/l	nl			
Province	202	2/23 Seasor	1	202	21/22 Season	ı	202	20/21 Seasor	1
	Weighted average	Range	No. of samples	Weighted average	Range	No. of samples	Weighted average	Range	No. of samples
Free State (Regions 21 - 28)	41.9	34.8 - 47.0	64	40.2	33.1 - 43.9	*45	41.1	38.0 - 44.9	*44
Mpumalanga (Regions 29 - 33)	42.5	40.9 - 45.2	11	36.6	35.2 - 44.5	13	41.6	40.4 - 42.5	7
Limpopo (Region 35)	41.9	36.4 - 47.2	17	42.2	39.9 - 47.3	27	42.7	40.5 - 44.4	19
Gauteng (Region 34)	-	-	-	41.1	-	1	42.5	-	1
North West (Region 12 - 20)	41.6	32.2 - 45.4	82	39.1	32.0 - 42.4	**86	40.5	30.4 - 43.7	85
RSA	41.8	32.2 - 47.2	174	39.7	32.0 - 47.3	172	41.0	30.4 - 44.9	156

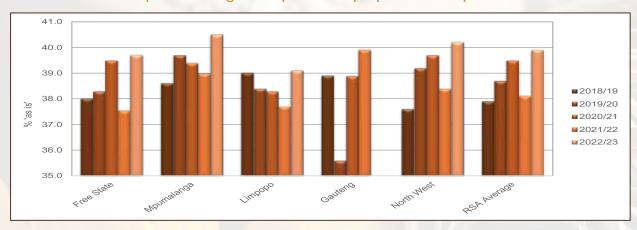
^{*}One sample with an outlier value was not taken into account for calculation purposes.

Graph 19: Comparison of the test weight per province over five seasons

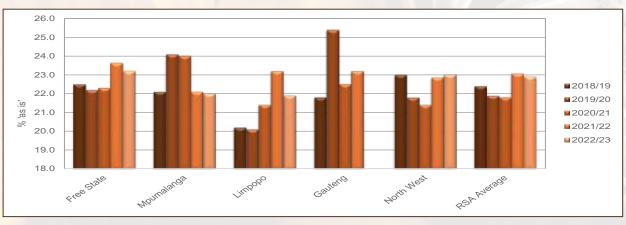
The nutritional component analyses, namely crude protein, -fat, -fibre and ash are reported as % (g/100 g) on an 'as received' or 'as is' basis.

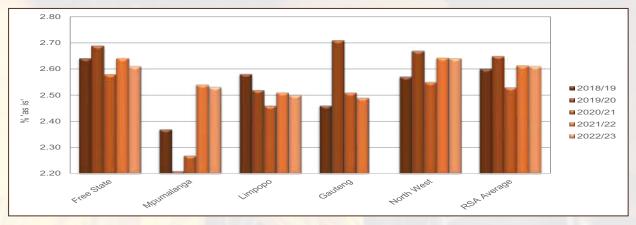

The weighted average crude protein content this season was 14.17%. The last four seasons reported the lowest average values of the eleven seasons for which crop survey results are available. The 2021/22 season's average was 13.90%, the 2019/20 season was 15.02% and the 2019/20 season 15.66%. Limpopo had the highest weighted average crude protein content of 15.62%, followed by Mpumalanga with 15.08, North West with 14.09% and the Free State with the lowest average of 13.74%. The weighted average crude fat percentage was 39.9% compared to the 38.1% of the previous season. The samples from Mpumalanga had the highest crude fat content of 40.5%, followed by North West with 40.2%. The Free State and Limpopo averaged 39.7% and 39.1% respectively.

The weighted average percentage crude fibre was 22.9%, the second highest weighted average value since the start of this survey in 2012/13. Average values varied from a low of 21.9% in Limpopo to a high of 23.2% in the Free State. The weighted average ash content was 2.61%, equal to last season. The provincial averages ranged from 2.50% in Limpopo to 2.64% in North West.


Graphs 20 to 23 on page 21 provide comparisons between provinces and over seasons for the nutritional components discussed above.

^{**}Three samples with outlier values were not taken into account for calculation purposes.


Graph 20: Average crude protein content per province over five seasons


Graph 21: Average crude fat content per province over five seasons

Graph 22: Average crude fibre content per province over five seasons

Graph 23: Average ash content per province over five seasons

Please see a comparison of the moisture, crude protein and crude fat results between the crop survey and ARC Grain Crops sunflower cultivar trials' samples in Table 4.

See Table 5 on page 23 for a summary of the RSA Sunflower Crop Quality averages of the 2022/23 season compared to those of the 2021/22 season.

Table 4: Comparison between the moisture, crude protein and crude fat results of the sunflower crop quality and ARC cultivar trial samples of the 2022/23 season Moisture, % Crude Fat, % **Analysis** Crude Protein, % (as is) (5hr, 105°C) (as is) **Sunflower Crop Quality Survey results** 4.8 14.17 39.9 **Average** 2.8 10.80 30.6 **Minimum** 8.3 18.53 47.2 **Maximum** 1.50 2.35 Standard deviation 0.65 174 174 174 No. of samples ARC Grains Crops Cultivar trial sample results 5.3 15.16 44.2 **Average** 3.4 10.95 37.2 **Minimum** 6.5 22.64 53.4 **Maximum** 0.59 3.14 3.30 Standard deviation 160 160 160 No. of samples % Difference between crop

Please also see pages 24 to 30 for the average sunflower quality per region.

and cultivar samples

-0.5

Graphs 20 to 23 on page 21 provide comparisons between provinces and over seasons for the nutritional components discussed above.

-0.99

-4.3

Please also see pages 24 to 30 for the average sunflower quality per region.

Table 5: South African Sunflower Cro	o Quality <i>i</i>	Averages	2022/23 vs	s 2021/22		
Class and Grade Sunflower		2022/23			2021/22	
	FH1	COSF	Average	FH1	COSF	Average
<u>Grading:</u>						
1. Damaged sunflower seed, %	0.06	1.01	0.22	0.19	0.57	0.28
2. Screenings, %	1.30	2.81	1.55	1.61	3.95	2.20
3. Sclerotia, %	0.05	0.46	0.12	0.54	2.77	1.09
4. Foreign Matter, %	0.92	2.18	1.13	1.13	1.53	1.23
5. Deviations in 2,3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	2.27	5.45	2.80	3.28	8.24	4.52
Musty, sour, khaki bush or other undesired smell	No	No	No	No	No	No
Substance present that renders the seed unsuitable for human or animal consumption or for processing into or utilization thereof as food or feed	No	No	No	No	No	No
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	7	1	0	6	1
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0	2	0
Number of samples	145	29	174	131	26	157
Nutritional analysis:						
Moisture, % (5 hr, 105 °C)	4.8	4.8	4.8	5.0	4.9	5.0
Crude Protein, % (as is)	14.13	14.38	14.17	15.12	14.56	15.02
Crude Fat, % (as is)	40.0	39.7	39.9	39.5	39.1	39.5
Crude Fibre, % (as is)	23.0	22.3	22.9	21.7	22.22	21.8
Ash, % (as is)	2.59	2.69	2.61	2.54	2.52	2.53
Number of samples	145	29	174	131	26	157

PRODUCTION REGION	(12) North-W	est West	ern Regio	n	(13) North-W (Sannies		al Region	1	(14) North-W	est Soutl	nern Regi	ion
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.10	0.00	0.80	0.28	1.81	0.00	14.00	3.89	0.00	0.00	0.00	0.00
2. Screenings, %	0.81	0.20	1.88	0.57	2.38	0.50	4.40	1.28	1.39	0.40	4.50	1.29
3. Sclerotia, %	0.01	0.00	0.10	0.04	0.06	0.00	0.20	0.08	0.03	0.00	0.30	0.09
4. Foreign Matter, %	0.81	0.18	2.42	0.88	0.97	0.30	1.90	0.52	0.79	0.10	1.80	0.56
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	1.63	0.38	4.30	1.27	3.42	0.80	6.14	1.75	2.21	0.54	5.66	1.56
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	2	0	20	5.55	1	0	10	2.94
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			8			1	13			2	?2	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.8	4.2	5.4	0.41	4.5	3.7	6.3	0.80	4.6	3.4	5.2	0.48
Crude Protein, % (as is)	15.34	13.41	18.18	1.50	14.69	13.13	15.65	0.84	13.46	10.80	18.53	1.35
Crude Fat, % (as is)	38.4	30.6	41.9	3.54	39.1	35.2	41.9	1.88	40.5	36.9	46.9	2.00
Crude Fibre, % (as is)	23.3	19.5	26.1	2.35	22.8	19.2	25.1	1.58	23.1	17.6	27.8	2.28
Ash, % (as is)	2.73	2.36	3.19	0.30	2.71	2.57	2.88	0.08	2.62	2.39	2.96	0.16
Number of samples			8			1	13			2	?2	

PRODUCTION REGION	(16) North-We Region	est Centi	ral-Easte	rn		est Centi (Ottosdal	ral-Northe	ern	(18) North-W (Venters	est Centr dorp)	al Regior	1
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.00	-	-	-	0.08	0.00	0.90	0.27	0.11	0.00	1.00	0.33
2. Screenings, %	0.80	-	-	-	0.82	0.42	1.40	0.30	0.95	0.42	2.24	0.70
3. Sclerotia, %	0.00	-	-	-	0.02	0.00	0.10	0.04	0.52	0.00	4.02	1.31
4. Foreign Matter, %	0.20	-	-	-	0.78	0.10	1.60	0.52	1.16	0.28	2.90	0.93
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	1.00	-	-	-	1.62	0.66	2.74	0.65	2.63	0.80	6.70	2.07
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	-	-	-	4	0	20	8.09	4	0	40	13.33
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	-	-		0	0	0	0.00	0	0	0	0.00
Number of samples			1			1	11				9	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	3.9	-	-	-	5.2	4.5	6.4	0.49	5.1	4.0	8.3	1.30
Crude Protein, % (as is)	10.97	-	-	-	12.95	11.36	14.20	1.15	14.70	13.27	16.79	1.25
Crude Fat, % (as is)	42.6	-	-	-	40.9	37.2	42.8	1.90	39.5	36.8	42.2	2.03
Crude Fibre, % (as is)	24.4	-	-	-	22.9	21.4	25.2	1.06	23.6	21.9	26.6	1.67
Ash, % (as is)	2.37	-	-	-	2.61	2.46	2.77	0.09	2.67	2.48	2.87	0.14
Number of samples			1			1	11				9	

PRODUCTION REGION	(19) North-W (Lichten		ral Region	1	(20) North-W	est Easte	ern Regio	n	(21) Free Sta (Viljoens	ite North- skroon)	Western	Region
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.75	0.00	9.00	2.60	0.00	0.00	0.00	0.00	0.05	0.00	0.54	0.16
2. Screenings, %	1.65	0.44	3.80	1.01	1.93	0.70	4.16	1.19	2.76	0.46	6.94	2.18
3. Sclerotia, %	0.41	0.00	4.08	1.16	0.11	0.00	0.26	0.12	0.00	0.00	0.00	0.00
4. Foreign Matter, %	0.92	0.26	2.00	0.63	0.82	0.28	1.50	0.47	2.04	0.50	4.26	1.41
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	2.98	0.86	8.48	2.16	2.86	1.80	5.66	1.40	4.80	1.70	9.08	3.12
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	5	0	30	12.25	1	0	14	4.22
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			12				6			1	11	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.4	3.5	5.8	0.63	4.2	2.8	4.9	0.76	4.8	4.2	5.3	0.36
Crude Protein, % (as is)	14.22	12.91	15.17	0.84	14.81	12.08	16.87	1.63	14.44	12.74	17.19	1.25
Crude Fat, % (as is)	41.6	38.4	44.3	1.94	40.2	37.0	44.9	2.98	39.1	35.3	41.6	2.23
Crude Fibre, % (as is)	22.4	21.2	23.5	0.68	22.7	22.0	23.7	0.63	23.3	21.3	27.2	1.75
Ash, % (as is)	2.60	2.50	2.76	0.08	2.54	2.14	2.91	0.25	2.68	2.62	2.78	0.05
Number of samples			12				6			1	1	

PRODUCTION REGION	(22) Free Sta (Bothavi		Western I	Region	(23) Free Sta	te North-	Western	Region	(24) Free Sta	te Centra	l Region	
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2. Screenings, %	1.57	0.70	2.00	0.75	1.01	0.40	2.20	0.69	2.10	0.64	4.26	1.23
3. Sclerotia, %	0.00	0.00	0.00	0.00	0.02	0.00	0.10	0.04	0.00	0.00	0.00	0.00
4. Foreign Matter, %	0.67	0.32	1.00	0.34	0.65	0.18	1.40	0.49	1.46	0.10	4.30	1.10
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	2.24	1.02	3.00	1.07	1.68	0.58	2.88	0.98	3.57	0.74	8.18	2.11
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	0	0	0	0.00	3	0	20	5.94
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			3				6			1	15	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.6	3.7	5.1	0.78	4.8	4.3	5.2	0.30	4.9	3.6	6.0	0.74
Crude Protein, % (as is)	13.79	12.80	14.83	1.02	14.25	13.13	16.59	1.22	13.88	12.62	17.36	1.32
Crude Fat, % (as is)	40.5	38.3	43.9	3.01	39.4	37.0	40.4	1.27	39.5	34.1	47.2	2.91
Crude Fibre, % (as is)	23.3	21.5	25.8	2.22	24.5	21.3	32.0	3.81	23.0	13.6	25.6	2.89
Ash, % (as is)	2.61	2.58	2.64	0.03	2.70	2.50	3.11	0.22	2.58	2.23	2.94	0.16
Number of samples			3				6			1	15	

PRODUCTION REGION	(25) Free Sta	te South	-Western	Region	(26) Free Sta	ite South	-Eastern l	Region	(27) Free Sta	te Northe	ern Regio	n
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.16	0.00	0.80	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2. Screenings, %	1.22	0.46	2.50	0.89	1.00	0.28	2.08	0.57	1.90	0.20	3.40	1.10
3. Sclerotia, %	0.88	0.00	4.30	1.91	0.12	0.00	0.42	0.17	0.06	0.00	0.50	0.17
4. Foreign Matter, %	0.63	0.22	1.00	0.28	0.98	0.12	2.66	0.82	1.77	0.26	4.28	1.40
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	2.72	1.32	7.40	2.63	2.10	0.66	4.20	1.27	3.73	0.88	6.30	1.86
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			5				9				9	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	5.4	5.1	5.9	0.31	4.8	3.9	5.9	0.55	4.7	4.4	5.6	0.41
Crude Protein, % (as is)	11.73	10.94	13.35	0.94	12.81	11.88	14.21	0.87	14.32	11.71	15.56	1.16
Crude Fat, % (as is)	41.2	38.8	43.2	1.91	40.1	36.2	43.4	2.63	39.3	37.1	41.4	1.47
Crude Fibre, % (as is)	23.7	21.8	26.3	1.66	23.2	22.2	24.5	0.69	22.9	21.5	24.1	1.11
Ash, % (as is)	2.68	2.50	2.88	0.14	2.50	2.25	2.70	0.13	2.53	2.28	2.73	0.16
Number of samples			5				9				9	

PRODUCTION REGION	(28) Free Sta	te Easter	n Region		(29) Mpumal	anga Soເ	ithern Re	gion	(30) Mpumala	anga Eas	stern Reg	ion
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-
2. Screenings, %	1.45	1.08	2.14	0.39	0.67	0.22	2.02	0.68	1.44	-	-	-
3. Sclerotia, %	0.07	0.00	0.20	0.10	0.21	0.00	0.80	0.32	0.00	-	-	-
4. Foreign Matter, %	1.50	0.80	2.22	0.55	0.38	0.10	0.80	0.34	1.20	-	-	-
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	3.02	2.30	4.36	0.85	1.26	0.50	2.92	0.94	2.64	-	-	-
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	0	0	0	0.00	0	-	-	-
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	-	-	-
Number of samples			6				6				1	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.8	4.2	5.3	0.37	5.1	4.4	5.5	0.37	5.0	-	-	-
Crude Protein, % (as is)	13.79	12.47	15.33	1.06	15.33	13.58	18.35	1.68	16.43	-	-	-
Crude Fat, % (as is)	40.4	40.0	40.8	0.36	39.5	35.7	43.3	2.83	40.6	-	-	-
Crude Fibre, % (as is)	22.6	20.5	24.4	1.26	22.7	21.2	25.5	1.74	20.7	-	-	-
Ash, % (as is)	2.65	2.43	2.93	0.16	2.54	2.31	2.64	0.12	2.75	-	-	-
Number of samples			6				6				1	

											ALC: N	State of Sta
	(31)				(33)				(35)			
PRODUCTION REGION	Mpumala	anga Cer	ntral Regi	on	Mpumalanga Northern Region			Limpopo Region				
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.00	-	-	-	0.00	0.00	0.00	0.00	0.06	0.00	1.08	0.26
2. Screenings, %	1.20	-	-	-	1.55	1.10	2.12	0.52	1.61	0.04	4.00	1.25
3. Sclerotia, %	0.00	-	-	-	0.10	0.00	0.30	0.17	0.00	0.00	0.00	0.00
4. Foreign Matter, %	9.20	-	-	-	1.34	0.32	2.50	1.10	1.23	0.00	6.00	1.33
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	10.40	-	-	-	2.99	1.42	4.24	1.44	2.84	0.04	7.10	1.88
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	-	-	-	0	0	0	0.00	0	0	0	0.00
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	-	-	-	0	0	0	0.00	0	0	0	0.00
Number of samples	1			3				17				
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.1	-	-	-	4.5	4.4	4.6	0.12	5.2	4.4	6.0	0.46
Crude Protein, % (as is)	15.29	-	-	-	14.06	13.26	14.77	0.76	15.62	13.94	18.22	1.38
Crude Fat, % (as is)	44.8	-	-	-	41.0	39.2	42.4	1.65	39.1	35.2	44.2	2.55
Crude Fibre, % (as is)	18.2	-	-	-	22.2	21.8	22.7	0.46	21.9	16.4	26.8	2.77
Ash, % (as is)	3.02	-	-	-	2.27	2.18	2.35	0.09	2.50	2.26	2.75	0.12
Number of samples			1				3			1	17	

Fatty acid Profile

Fatty acid profiles are the most important tool for identification of authenticity of vegetable fats and oils. All types of oil have their own specific fatty acid profile which is unique to that product. Fatty acids are typically esterified to a glycerol backbone to form triglycerides (also called fats or oils). Fatty acids are either described as saturated or unsaturated, with saturated fatty acids being solid at room temperature and unsaturated fatty acids being liquid at room temperature. Unsaturated fatty acids are further subdivided into mono-unsaturated (one double bond in the carbon chain) or poly-unsaturated (more than one double bond in the carbon chain). The unique fatty acid profile of each product/crop is a combination of saturated, mono-unsaturated and poly-unsaturated oils and is specific to that type of oil.

Fatty acid profiles of every crop, however, are subject to variation. The variation or typical pattern of fatty acids in a specific oil not only influences the stability and physical properties of the oil but also aids in distinguishing one type of oil from another. Variation of fatty acids within the same product depend on climate, latitude, soil type, cultivar, rainfall as well as seasonal variation. These variations should be included when ranges for identification of authenticity are determined.

It is imperative to include ranges wherein fatty acids vary, in order to successfully validate the authenticity of a specific vegetable oil. Building of a database requires gathering of information over different seasons, areas and cultivars in order to give a true reflection of the ranges wherein fatty acids can differ. Currently, no national updated database for fatty acid composition of sunflower oil is available.

It is important that South Africa, as a sunflower seed producing country, develop and maintain a national fatty acid profile database to the benefit of the Oil Seed Industry. Annual analysis of crop and cultivar samples will ensure that the natural variation caused by different cultivars as well as the influence of climate and locality are included in the database values. Seasonal variations will also be addressed. Recording all variation applicable to the crops in the database will enable the annual review of the specified ranges.

Precision Oil Laboratories was subcontracted for the fourth consecutive year to perform fatty acid profile analyses on 20 composite crop samples representing different production regions as well as 20 cultivar samples from different localities. Please refer to Tables 6, 7 and 8 on pages 32 to 34 for the results.

C14:0	Myristic acid	C18:3n5	Eleostearic acid
C16:0	Palmitic acid	C18:3n3	n3 Linolenic αcid
C16:1	Palmitoleic acid	C20:0	Arachidic acid
C17:0	Margaric acid	C20:1	Eicosenoic acid
C18:0	Stearic acid	C20:2	Eicosadienoic acid
C18:1 cis	cis Oleic acid	C22:0	Behenic acid
C18:1n7	Vaccenic acid	C24:0	Lignoceric acid
C18:2 cis	cis Linoleic acid	Unknown 1	
C18:3n6	n6 Linolenic αcid	Unknown 2	

References:

Accum, F., 1820. "A Treatise on Adulteration of Food and Culinary Poisons", Longman, Hurst, Rees, Orme and Row, London.

Gunstone, F.D., 1996. Fatty Acid and Lipid Chemistry, 1st edition, Blackie Academic & Professional, London, pp 1-23. Rossell, J.B., Measurement of rancidity. IN: J.C. and Hamilton R.J. (Eds), Rancidity in Foods. Blackie Academic and Professional, Glasgow, pp22-53.

Van Niekerk, P.J., 1990. Determination of the component oils of edible oil blends. University of Pretoria.

The Fatty acid Profile information was supplied by Dr. Mathilda Mostert from Precision Oil Laboratories.

							a Eatty acide/100 a Eatty Acide	10 a Eathy Acid	ų.						o Eathu acide (400 o Eathu Acide				
	Region	C14:0	C16:0	C16:1	C17:0	C18:0	C18:1 cis	C18:1 n7*	C18:2 cis	C18:3 n6	C18:3 n5	C18:3 n3	C20:0	C20:1	C20.2	C22:0	C24:0	Unknown 1	Unknown 2
	12	QN	5.98	ND	QN	5.99	16.56	0.52	6.89	QN	Q	ГОО	0.396	LOQ	Q	0:907	0.198	ГОО	LOQ
	13	QN	6.61	ND	QN	6.14	14.91	0.55	9:89	QN	QN	LOQ	0.416	ΓΟΦ	Q	0.97	0.234	0.59	0.56
	14	roo	6.54	ΩN	QN	5.05	19.06	0.57	9.99	QN	QV	700 1	0.356	007	Ð	0.851	0.213	0.18	0.17
	14	Q	6.27	Ω	Q	5.86	17.05	0.53	0.89	Q	Q	007	0.408	007	9	0.891	0.205	0.20	0.21
	14	ΓOO	90.9	ΩN	Q	4.27	27.01	0.56	0.09	Q	Q	TO0	0.332	0.143	9	0.832	0.257	TOO	LOQ
_	17	POO	6.35	POO	Q	4.39	22.00	0.57	64.7	Q	Q	007	0.322	007	9	0.805	0.219	0.16	0.15
	18	Q	5.53	ΩN	ΓΟΘ	6.61	17.22	0.54	68.2	Q	Q	TO0	0.375	007	9	0.759	0.168	TOO	LOQ
	19	roo	00.9	ΩN	Q	5.80	20.13	0.53	65.4	Q	Q	007	0.370	ροη	9	0.833	0.209	0.19	0.17
	20	QN	5.93	QN	Q	5.83	17.27	0.48	68.2	Q	Q	LOQ	0.406	POO	9	0.95	0.212	0.16	0.16
	Min		5.53			4.27	14.91	0.48	0.09		,		0.322			0.759	0.168	0.16	0.15
	Max		6.61			6.61	27.01	0.57	68.9	•	٠		0.416	0.143		0.97	0.257	0.59	0.56
	N	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	21	ГОО	6.21	ΩN	Q	5.11	18.78	0.49	67.2	QN	Ð	ГОО	0.348	TOO I	9	0.828	0.224	0.23	0.21
	23	QN	5.86	ΩN	QN	6.85	15.14	0.44	69.3	Q	9	TO0	0.414	ΓΟΟ	9	0.881	0.211	0.28	0.27
	24	LOQ	6.38	ND	ND	4.52	20.32	0.51	0.99	ND	QN	LOQ	0.339	ΓΟΦ	QN	0.873	0.237	0.25	0.23
	24	QN	5.85	roo	QN	8.39	14.28	0.52	68.1	Q	QN	TOO	0.516	ГОО	Ð	1.06	0.227	0.37	0.36
	25	LOQ	6.65	ND	ND	4.41	18.45	0.58	0.89	ND	ND	LOQ	0.313	LOQ	QN	0.786	0.200	LOQ	LOQ
	26	ND	90.9	ND	ND	5.96	15.02	0.55	70.3	ND	QN	LOQ	0.379	rog	QN	0.895	0.205	LOQ	LOQ
	27	DN	6.63	ND	ND	6.15	18.86	0.58	65.1	ND	Q	LOQ	0.471	0.147	QN	1.22	0.337	LOQ	LOQ
	28	QN	6.24	ND	QN	5.85	18.28	0.52	67.1	QN	QN	ГОО	0.401	T00	Q	868.0	0.200	rog	T00
	Min		5.85			4.41	14.28	0.44	65.13				0.313			0.786	0.200		0.21
	Мах		6.65			8.39	20.32	0.58	70.31				0.516	0.147		1.22	0.337	0.37	0.36
	2	8	80	80	80	8	8	8	8	8	80	8	80	8	80	80	8	8	80
	29	ΓΟΟ	6.23	QN	QN	5:35	19.44	0.53	66.2	QN	Q.	T007	0.359	ΓΟΟ	Q	0.855	0.217	0.24	0.24
	35	LOQ	6.62	LOQ	ND	5.27	18.80	0.59	66.4	ND	QN	LOQ	0.362	LOQ	QN	0.841	0.202	0.29	0.28
	35	LOQ	6.01	rog	ND	4.45	25.29	0.55	61.6	QN	Q	rog	0.308	0.141	QN	0.691	0.195	0.28	0.27
	Min	•	6.01	٠	,	4.45	18.80	0.55	9.19	,	,	,	0.308	,	٠	0.697	0.195	0.28	0.27
	Мах		6.62			5.27	25.29	0.59	66.4		,		0.362	0.141		0.841	0.202	0.29	0.28
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Min		5.53			4.27	14.28	0.44	60.01				0.308			0.691	0.168	0.16	0.15
	Мах		6.65			8.39	27.01	0.59	70.31				0.516	0.147		1.22	0.337	0.59	0.56
	2	ç	ç	Š	;	;	į	;	;	-	;		-	;	;				:

Note: All fatty acids marked with an asterisk (*) are not SANAS accredited. Limit of detection (LOD) = 0.06 g/100 g. Values below the limit of detection are reported as ND (not detected). Limit of quantitation (LOQ) = 0.14 g/100 g. Values below the limit of quantitation cannot be accurately quantified.

					ji	Table 7: Fa	ifty acid pr	ofile resul	tty acid profile results of a selection of cultivar samples from the 2022/23 season	ction of c	sultivar sa	mples fro	m the 202	2/23 seas	La Car						
	-		100						g Fa	tty acids/10	g Fatty acids/100 g Fatty Acids	cids							-		
Province	Locality	neglon	Cultivar	C14:0	C16:0	C16:1	C17:0	C18:0	C18:1 cis C	C18:1 n7 C	C18:2 cis C	C18:3 n6 (C18:3 n5	C18:3 n3	C20:0	C20:1	C20.2	C22:0	C24:0	Unknown 1	Unknown 2
		18	AGSUN 5106 CLP	TOO	6.18	TOO	QN	5.28	18.47	19:0	67.4	QN	QN	roo	0.326	ΓOΦ	Q	0.784	0.211	0.18	0.17
		18	AGSUN 5270	QN	5.71	QN	QN	4.80	21.72	0.54	65.4	QN	ND	T00	0.298	ΓOO	Q	0.748	0.215	LOQ	LOQ
		18	P 65 LP 65	T00	6.47	QN	Q	4.52	20.36	0.55	0.99	Q.	QN	T00	0.329	ΓOO	Q	0.841	0.217	0.15	0.15
		18	PAN 7160 CLP	9	99'9	9	9	5.49	22.42	0.45	63.8	9	g	001	0.396	T007	9	0.939	0.226	007	TOO TOO
	Forcherstroom 3	8	SY 3970 CL	9	5.43	9	9	6.07	21.47	0.45	64.3	9	Q.	001	0.391	00 F	9	0.975	0.238	0.19	0.17
			Min	,	5.43			4.52	18.47	0.45	63.8		•	·	0.298			0.748	0.211	0.15	0.15
			Max		6.47			6.07	22.42	19:0	67.4				0.396			0.975	0.238	0.19	0.17
			N	5	5	2	5	2	2	2	2	2	2	2	2	5	2	2	5	5	5
		18	AGSUN 5106 CLP	Q	5.83	9	007	7.10	14.77	0.57	9.69	2	Q	00 ₁	0.421	LOQ	9	0.849	0.192	0.15	0.15
		\$	AGSUN 5270	Ð	5.80	gol	9	60.9	16.06	0.54	69.4	Ð	Q	001	0.375	Log	9	0.845	0.221	0.15	0.15
		18	P 65 LP 65	g	5.56	9	9	5.87	16.16	0.44	6.69	2	Q	001	0.382	Log	9	998.0	0.201	0.15	0.14
		18	PAN 7160 CLP	₽	5.63	9	9	5.90	17.00	0.47	68.9	2	g	g	0.395	00 ₁	9	0.898	0.203	007	0.14
	Potchetstroom 4	18	SY 3970 CL	₽	5.15	9	9	6.64	15.49	0.43	70.0	2	g	g	0.413	00 ₁	9	0.980	0.212	0.14	TOO
North West			Min		5.15			5.87	14.77	0.43	68.9		•	•	0.375	•	•	0.845	0.192	0.14	0.14
			Max		5.83			7.10	17.00	0.57	0.07				0.421			0.980	0.221	0.15	0.15
			N	5	5	5	5	5	2	5	2	5	2	5	5	5	2	2	5	5	2
		18	AGSUN 5106 CLP	₽	5.22	9	о П	7.02	15.22	0.46	70.0	2	Q	007	0.427	TOO TOO	₽	0.900	0.182	TOO TOO	TOO
		\$	AGSUN 5270	g	5.15	9	9	6.74	17.51	0.44	1.89	2	Q	001	0.415	Log	9	0.907	0.200	007	TOO
		18	P 65 LP 65	Ð	5.48	9	007	5.79	15.91	0.44	70.4	9	Q	001	0.382	LOQ	9	0.864	0.192	007	TOO
	Capter	8	PAN 7160 CLP	9	5.53	9	9	6.25	15.78	0.47	8.69	9	g	00 ₁	0.433	00 T	9	0.940	0.195	007	TOO TOO
	Boskop 3	18	SY 3970 CL	9	4.93	9	9	6.93	17.32	0.41	68.2	9	g	00 ₁	0.439	00 T	9	1.02	0.205	007	TO0
			Min		4.93		·	5.79	15.22	0.41	68.1		·	·	0.382	·	·	0.864	0.182		
			Max		5.53			7.02	17.51	0.47	70.4				0.439			1.02	0.205		
			N	5	5	2	5	5	2	2	2	5	2	5	5	5	5	2	5	5	5
		Min		•	4.93			4.52	14.77	0.41	63.8		•	•	0.298		•	0.748	0.182	0.14	0.14
		Мах			6.47			7.10	22.42	19:0	70.4				0.439			1.02	0.238	0.19	0.17
		N		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
		26	AGSUN 5106 CLP	LOQ	6.36	LOQ	QN	4.48	14.98	99:0	71.6	QN	ND	LOQ	0.320	LOQ	QV	0.746	0.247	LOQ	LOQ
		56	AGSUN 5270	TOG	6.36	TOO	QN	4.48	14.97	99:0	71.6	DN	0.27	LOQ	0.320	LOQ	QN	0.745	0.247	ND	ND
		56	P 65 LP 65	LOQ	6.81	TOO	QN	4.25	15.95	19:0	70.5	DN	ND	LOQ	0.312	LOQ	QN	0.774	0.214	LOQ	LOQ
0,000	Information	56	PAN 7160 CLP	TOO	6.84	QN	Q	4.10	16.07	0.62	70.4	QN	0.23	roo	0.314	ΓOO	Q	0.791	0.220	QN	QN
rree state	Senekai	26	SY 3970 CL	go ₁	6:59	001	9	4.53	14.29	29:0	71.6	9	0.33	001	0.346	001	9	0.95	0.251	Q.	Q.
			Min		6.36		·	4.10	14.29	0.61	70.4		0.23	·	0.312	·		0.745	0.214		
			Мах		6.84			4.53	16.07	29:0	71.6		0.33		0.346			0.95	0.251		
			N	5	5	5	5	5	2	2	5	2	2	5	2	5	5	2	5	5	5
		Min			4.93			4.10	14.29	0.41	63.8		0.23		0.298			0.745	0.182	0.14	0.14
RSA		Мах			6.84		ŀ	7.10	22.42	29:0	21.6	·	0.33	·	0.439	·	·	1.02	0.251	0.19	0.17
		N		20	20	20	20	20	70	20	20	20	20	20	20	20	20	20	20	20	20
Note:																					

Note:

All fatty acids marked with an asterisk (") are not SANAS accredited. Limit of detection (LOD) = 0.06 g/100 g.

Values below the limit of detection are reported as ND (not detected). Limit of quantitation (LOQ) = 0.14 g/100 g.

Values below the limit of quantitation cannot be accurately quantified.

					Ta	Table 8: Fatty acid profile resu	ty acid pr		s of a sele	ction of c	ts of a selection of cultivar samples from the 2022/23 season	nples from	the 2022/	23 season						
Province	Region	Cultivar						g Fatty aci	g Fatty acids/100 g Fatty Acids	atty Acids										
	io Bay	,	C14:0	C16:0	C16:1	C17:0	C18:0	C18:1 cis	C18:1 n7	C18:2 cis	C18:3 n6	C18:3 n5	C18:3 n3	C20:0	C20:1	C20.2	C22:0	C24:0	Unknown 1	Unknown 2
			roo	6.18	LOQ	QN	5.28	18.47	0.61	67.4		QN	LOQ	0.326	LOQ		0.784	0.211	0.18	0.17
North West	18	AGSUN 5106	QN	5.83	QN	LOQ	7.10	14.77	0.57	9.69	QN	QN	LOQ	0.421	LOQ	Q	0.849	0.192	0.15	0.15
		CLP	QN	5.22	ND	LOQ	7.02	15.22	0.46	70.0	ND	ND	LOQ	0.427	LOQ	QN	0.900	0.182	LOQ	roo
Free State	26		LOQ	6.36	rog	ND	4.48	14.98	99:0	71.6	ND	ND	LOQ	0.320	LOQ	ND	0.746	0.247	LOQ	LOQ
	Min		,	5.22	,	,	4.48	14.77	0.46	67.4	·	·	·	0.320	·	·	0.746	0.182	0.15	0.15
	Мах			6.36			7.10	18.47	99'0	71.6				0.427			0.900	0.247	0.18	0.17
	N		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			QN	5.71	ΩN	QN	4.80	21.72	0.54	65.4	QN	ND	LOQ	0.298	LOQ	QN	0.748	0.215	LOQ	rog
North West	18	OCCINI 6270	ND	5.80	LOQ	ND	60.9	16.06	0.54	69.4	ND	ND	LOQ	0.375	LOQ	ND	0.845	0.221	0.15	0.15
		AGSOIN SZ 10	QN	5.15	QN	QN	6.74	17.51	0.44	68.1	QN	ND	LOQ	0.415	LOQ	QN	0.907	0.200	LOQ	LOQ
Free State	26		LOQ	98.9	TOO	QN	4.48	14.97	99:0	71.6	ND	0.27	LOQ	0.320	LOQ	QN	0.745	0.247	QN	QN
	Min		,	5.15			4.48	14.97	0.44	65.4				0.298			0.745	0.200		
	Max			6.36			6.74	21.72	99.0	71.6		0.27		0.415			0.907	0.247	0.15	0.15
	N		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			ΓOΦ	6.47	QN	QN	4.52	20.36	0.55	0.99	QN	QN	LOQ	0.329	LOQ	QN	0.841	0.217	0.15	0.15
North West	18	000	QV	5.56	QN	QN	5.87	16.16	0.44	6.69	Ð	Q.	LOQ	0.382	POO	Q	998.0	0.201	0.15	0.14
		AGSOIN 3270	QV	5.48	QN	roo	5.79	15.91	0.44	70.4	Ð	Q.	LOQ	0.382	POO	Q	0.864	0.192	LOQ	roo
Free State	56		ΓOO	6.81	гоо	QN	4.25	15.95	0.61	70.5	Q	Q	LOQ	0.312	roo	QN	0.774	0.214	LOQ	rog
	Min			5.48	·	•	4.25	15.91	0.44	0.99	•	•	·	0.312	•	•	0.774	0.192	0.15	0.14
	Max			6.81			5.87	20.36	0.61	70.5		•		0.382	•		0.866	0.217	0.15	0.15
	2		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			QN	5.66	ND	ND	5.49	22.42	0.45	63.8	ND	ND	LOQ	968.0	LOQ	ND	0.939	0.226	LOQ	LOQ
North West	18	AGS11N 5270	QN	5.63	QN	QN	5.90	17.00	0.47	68.9	QN	QN	LOQ	0.395	LOQ	QN	0.898	0.203	LOQ	0.14
		O ZO NIGODA	ND	5.53	ND	ND	6.25	15.78	0.47	69.8	ND	ND	LOQ	0.433	LOQ	ND	0.940	0.195	LOQ	LOQ
Free State	26		roo	6.84	Q	Q	4.10	16.07	0.62	70.4	Q	0.23	LOQ	0.314	roo	Q	0.791	0.220	QN	Q
	Min			5.53			4.10	15.78	0.45	63.8				0.314	٠		0.791	0.195		
	Мах			6.84			6.25	22.42	0.62	70.4		0.23		0.433			0.940	0.226		0.14
	Z		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
			Q	5.43	Q	Q	6.07	21.47	0.45	64.3	Q	Q	ΓΟΟ	0.391	ροη	Q	0.975	0.238	0.19	0.17
North West	18	AGSLIN 5270	Q	5.15	Q	Q	6.64	15.49	0.43	70.0	Q	ΩN	LOQ	0.413	POO	Q	0.980	0.212	0.14	POO
			Q	4.93	Q	Q	6.93	17.32	0.41	68.2	QN	ND	LOQ	0.439	roo	Q	1.02	0.205	LOQ	roo
Free State	26		LOQ	6:28	LOQ	Q	4.53	14.29	0.67	71.6	QN	0.33	LOQ	0.346	LOQ	QN	0.95	0.251	ND	Q
	Min			4.93	٠		4.53	14.29	0.41	64.3			•	0.346		•	0.95	0.205	0.14	
	Max			6:29			6.93	21.47	0.67	71.6		0.33		0.439	•	•	1.02	0.251	0.19	0.17
	N		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
		Min		4.93			4.10	14.29	0.41	63.8				0.298		•	0.745	0.182	0.14	0.14
RSA		Мах		6.84			7.10	22.42	0.67	71.6		0.33		0.439		•	1.02	0.251	0.19	0.17
		N	20	20	20	20	20	20	70	20	70	20	20	20	20	20	20	20	70	20
Note:																				

Note:
All fatty acids marked with an asterisk (*) are not SANAS accredited.
Limit of detection (LOD) = 0.06 g/100 g.
Limit of quantitation (LOQ) = 0.14 g/100 g.
Values below the limit of detection are reported as ND (not detected).
Limit of quantitation (LOQ) = 0.14 g/100 g.
Values below the limit of quantitation cannot be accurately quantified.

SAMPLING PROCEDURE:

A working group determined the procedure to be followed to ensure that the crop quality samples submitted to the SAGL by the various grain storage companies, were representative of the total crop.

Each delivery was sampled as per the grading regulations for grading purposes.

After grading, the grading samples were placed in separate containers according to class and grade, per silo bin at each silo.

After 80% of the expected harvest had been received, the content of each container was divided with a multi slot divider in order to obtain a 3 kg sample.

If there were more than one container per class and grade per silo bin, the combined contents of the containers were mixed thoroughly before dividing it with a multi slot divider to obtain the required 3 kg sample.

The samples, marked clearly with the name of the depot, the bin/bag/bunker number(s) represented by each individual sample as well as the class and grade, were then forwarded to the SAGL.

GRADING:

Full grading was done in accordance with the Regulations relating to the Grading, Packing and Marking of Sunflower Seed intended for sale in the Republic of South Africa (Government Notice NO. 45 of 22 January 2016).

See pages 70 to 77 of this report.

TEST WEIGHT:

Test weight provides a measure of the bulk density of grain and oilseeds.

Test weight does not form part of the grading regulations for sunflower seed in South Africa. An approximation of the test weight of South African sunflower seed is provided in this report for information purposes. The standard working procedure of the Kern 222 instrument, as described in ISO 7971-3:2019, was followed. The g/1 L filling mass of the sunflower seed samples was determined and divided by two. The test weight was then extrapolated by means of the following formulas obtained from the Test Weight Conversion Chart for Sunflower Seed, Oil of the Canadian Grain Commission: y = 0.1936x + 2.2775 (138 to 182 g/0.5 L) and y = 0.1943x + 2.1665 (183 to 227 g/0.5 L).

NUTRITIONAL ANALYSIS:

Milling

Prior to the nutritional analyses, the sunflower seed samples were milled on a Retch ZM 200 mill fitted with a 1.0 mm screen.

Moisture

The moisture content of the samples was determined as a loss in weight when dried in an oven at 105 °C for 5 hours according to AgriLASA method 2.1, latest edition.

Crude Protein

The Dumas combustion analysis technique was used to determine the crude protein content, according to AACCI method 46-30.01, latest edition.

This method prescribes a generic combustion method for the determination of crude protein. Combustion at high temperature in pure oxygen sets nitrogen free, which is measured by thermal conductivity detection. The total nitrogen content of the sample is determined and converted to equivalent protein by multiplication with a factor of 6.25 to obtain the crude protein content.

Crude Fat

In-House method 024 was used for the determination of the crude fat in the samples. After sample preparation the fat is extracted by petroleum ether with the aid of the Soxhlet extraction apparatus, followed by the removal of the solvent by evaporation and weighing the dried residue thus obtained. The residue is expressed as % crude fat.

Crude Fibre

Crude fibre is the loss on ignition of the dried residue remaining after digestion of a sample with 1.25% Sulphuric acid (H₂SO₄) and 1.25% Sodium hydroxide (NaOH) solutions under specific conditions.

In-House method 031 was used for the determination of the crude fibre in the samples. This method is based on AACCI method 32-10.01 using the Velp FIWE Advance fibre AutoExtractor.

Ash

Ash is defined as the quantity of mineral matter which remains as incombustible residue of the tested substance, after application of the described working method. In-house method No. 011, based on AACCI method 08-03.01, was used for the determination. The samples were incinerated at 600 ± 15 °C in a muffle furnace for 2 hours.

PRECISION OIL LABORATORIES' FATTY ACID PROFILE METHODS:

Pat Extraction

In-House method POL 019 was used for the extraction of the crude fat from the samples. After sample preparation the fat is extracted by petroleum ether under reflux, followed by the removal of the solvent by evaporation. The residue obtained from the fat extraction is used for preparation of methyl esters for determination of the fatty acid profile.

Patty Acid Profile
In-House method POL 015 was used for determination of the fatty acid composition. Extracted fat is converted to methyl esters using an alkali catalyzed method. Methyl esters are injected into a Gas Chromatograph and an external fatty acid methyl ester standard is used to identify peaks based on retention times. The fatty acid composition is expressed as a total fatty acid content of 100% with different fatty acids representing a percentage of the total fatty acids.

CERTIFICATE OF ACCREDITATION

In terms of section 22(2) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, I hereby certify that:-

SOUTHERN AFRICAN GRAIN LABORATORY NPC

Co. Reg. No.: 1997/018518/08

Facility Accreditation Number: T0116

is a South African National Accreditation System accredited facility provided that all conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation,

Annexure "A", bearing the above accreditation number for

CHEMICAL AND PHYSICAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2017

The accreditation demonstrates technical competency for a defined scope and the operation of a quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant accreditation symbol to issue facility reports and/or certificates

Mr R Josias Chief Executive Officer

Effective Date: 01 November 2019 Certificate Expires: 31 October 2024

Facility Number: T0116

ANNEXURE A

SCHEDULE OF ACCREDITATION

Facility Number: T0116

Permanent	Address	of	Laboratory:	

Southern African Grain Laboratories NPC Agri-Hub Office Park - Grain Building

477 Witherite Road The Willows Pretoria

0040

Technical Signatories:

Ms J Nortje (All Methods excl. In-house

method 029)

Ms M Bothma (All Chemical Methods)

Ms A de Jager (Nutrients & Contaminants

Methods)
s W Louw (In-house Methods 001, 002, 003,

010 & 026)

Ms D Moleke (Rheological Methods)

Mrs H Meyer (All Chemical, Nutrients and Contaminants & Grading Methods)

Ms J Kruger (All Chemical Methods)

Ms M Motlanthe (In-house Methods 001, 003

& 026)

Mr B van Der Linde (Grading)

Ms M Ramare (All Chemical Methods Excl. In-House Method 012 and SOP MC23)

Ms T de Beer (Rheological Methods)

Postal Address:

Postnet Suite # 391 Private Bag X1 The Willows 0041

Tel: (012) 807-4019

Fax: N/A

E-mail: hannalien.meyer@sagl.co.za

Nominated Representative:

Mrs H Meyer

Issue No.: 32

Date of Issue: 19 November 2021 Expiry Date: 31 October 2024

Material or Products Tested	Type of Tests / Properties	Standard Specifications,
	Measured,	Techniques / Equipment Used
	Range of Measurement	

CHEMICAL

Ground Barley Moisture (Oven Method)

re (Oven Method) Analytical EBC Method 3.2,

Cereal and cereal products specifically-wheat, rice, (hulled paddy), barley, millet, rye, and oats as grain, semolina and flour Moisture (Oven Method)

ICC Std No.110/1, Latest Edition

latest Edition (2 hour; 130⁰C)

(90 min; 130°C) (2 hour; 130°C)

Flour, semolina, bread, all kind of grains and cereal products and food products (except those that

Moisture (Oven Method)

AACCI 44-15.02, Latest Edition

(1 hour; 130°C) (72 hour; 103°C)

are sugar coated)

Page 1 of 3

,		
Maize Grits	Moisture (Oven Method)	Analytical EBC Method 6.2.2, latest edition (4 hours, 130°C)
Animal feed, Plant tissue and Sunflower (Milled)	Moisture (Oven Method)	AgriLASA 2.1, Latest Edition (5 hours, 105 ⁰ C)
All flours, cereal grains, oilseeds and animal feeds	Nitrogen and protein (Combustion method - Dumas)	AACCI 46-30.01, Latest Edition
Cereal based food stuff	Dietary fibres (Total)	In-house method 012
Food stuff and feeds	Carbohydrates (by difference) (calculation) Energy value (calculation) Total digestible nutritional value (calculation)	SOP MC 23
Food Stuff and feeds	Determination of Ash	In-house method 011
Wheat Kernels	Moisture (Oven Method)	Government Gazette Wheat Regulation, Latest Edition (72 hour, 103°C)
Flours of grains e.g. barley, oats, triticale, maize, rye, sorghum and wheat; oilseeds like soybeans and sunflower, feeds and mixed feeds and foodstuffs	Crude fat (Ether extraction by Soxhlet)	In-house method 024
Meal and flour of wheat, rye, barley, other grains, starch containing and malted products	Falling number	ICC Std 107/1, Latest Edition
NUTRIENTS AND CONTAMINANTS		
Vitamin fortified food and feed products and fortification mixes grain based	Vitamin A as all trans Retinol (Saponification) (HPLC)	in-house method 001
	Thiamine Mononitrate (HPLC) Riboflavin (HPLC) Nicotinamide (HPLC) Pyridoxine Hydrochloride (HPLC)	In-house method 002
	Folic Acid (HPLC)	in-house method 003

Page 2 of 3

Grain based food and feed

and fortification mixes

products (fortified and unfortified) Total Iron (Fe)

Facility Number: T0116

In-house method 010

Total Sodium (Na)

Total Zinc (Zn)

Facility Number: T0116

Yeast and Bread Vitamin D₂ (HPLC) In-House method 029

Food and feed Multi-Mycotoxin: In-house method 026

-Aflatoxin G_1 , B_1 , G_2 , B_2 and total

-Deoxynivalenol (DON), 15-ADON

-Fumonisin B₁, B₂, B₃ -Ochratoxin A -T2, HT-2 - Zearalenone

GRADING

Maize Defective kernels (White maize/ Government Gazette Maize Regulation, Latest Edition

yellow maize)

Cereal as grains (Wheat, barley, Hectolitre mass (Kern222) ISO 7971-3, Latest edition

Wheat Screenings Government Gazette Wheat

Grading Regulation, Latest

Edition

RHEOLOGICAL

rye and oats)

Wheat flour Alveograph (Rheological properties) ICC Std.121, Latest Edition

Flours Farinograph (Rheological properties) AACCI 54.02, Latest Edition

> (Rheological behaviour of flour Farinograph: Constant Flour Weight procedure)

Hard, soft and durum wheat (flour Mixograph (Rheological properties) and whole wheat flour)

Industry accepted method 020 (Based on AACCI 54-40.02, Latest Edition Mixograph Method)

Original Date of Accreditation: 01 November 1999

ISSUED BY THE SOUTH AFRICAN NATIONAL ACCREDITATION SYSTEM

Page 3 of 3

Report

Evaluation of sunflower cultivars: 2022/2023 season

ARC-Grain Crops Institute in collaboration with the following seed companies: Agricol, Pannar, Pioneer, Syngenta, and Limagrain Zaad South Africa.

INTRODU	UCTION
MATERIA	ALS AND METHODS 1-2
RESULT	S2
Days fr	om planting to flowering2
Oil and	protein concentration2
Seed y	ield3
Oil yield	d
Parame	eters calculated from the analysis of variance4
Regres	sion line coordinates at different yield targets4
Yield p	robability4
Acknov	vledgements5
Refere	nces5
SOUTH A	AFRICAN SCLEROTINIA RESEARCH NETWORK: CULTIVAR
EVAL	_UATIONS 2022/2023 6-11
List of Ta	ables
Table 1	Collaborating company, trial localities and responsible co-workers
	2022/2023
Table 2	Trial site information 2022/2023
Table 3	Number of days from planting to 50 percent flowering of cultivars at selected
	localities and planting date
	2022/202314

The moisture free seed oil concentration (%) of cultivars at selected

localities 2022/2023......15

localities 2022/2023......16

Mean seed yield (t ha-1) of cultivars at each locality 2022/2023......17

The moisture free seed protein concentration (%) of cultivars at selected

Table 4

Table 5

Table 6

Table 7	Oil yield (t ha ⁻¹) of cultivars at selected localities 2022/2023	18
Table 8	Parameters calculated from the analysis of variance for yield	
	data at each locality	19
Table 9	Regression line coordinates at different yield potentials 2022/2023	20
Table 10	Yield probability (%) of cultivars 2022/2023 at different yield	
	potentials	21
Table 11	Yield probability (%) of cultivars 2020/2021 and 2022/2023 at differe	nt
	yield potentials	22
Table 12	yield probability (%) of cultivars 2019/20 to 2022/2023 at different yield	eld
р	otentials	22
List of Fi	gures	
Figure 1	· · ·	23-24
Figure 2	Regression lines for cultivars 2021/2022 and 2022/2023	25-26

INTRODUCTION

Optimisation of crop production requires, among several inputs, the selection of a well performing cultivar. Sunflower cultivar trials, which are done since the nineteen seventies in South Africa, have the aim to enable farmers to optimise sunflower production through sound cultivar selection.

In this project, commercially available cultivars are evaluated to predict their future yield performances and to assess their seed composition. This project is the only unbiased effort in South Africa that strives to evaluate important cultivars in the main areas of production. The information generated in these field trials on grain yield and seed quality is not only available to farmers but to all interested parties.

MATERIALS AND METHODS

This project was conducted during the 2022/2023 season with the voluntary collaboration of Agricol, Cortiva (Pannar, Pioneer), Syngenta and Limagrain Zaad South Africa. Seed companies entered 20 cultivars for evaluation (Table 1) and supplied seed to the ARC-GC which planned the field trials with randomised complete-block design layouts with three replicates. Seed from cultivars were packed according to trial plans and send to cooperators before the onset of the growing season.

Eleven of the 20 cultivars were Clearfield types on which the use of the post emergence broad leaf weed controlling herbicide mixture, imazapyr + imazamox (Euro-Lightning®), is possible. In the field trials these cultivars were treated in the same way as the regular cultivars and received no Euro-Lightning®.

Each collaborating seed company had to conduct at least one trial for each cultivar entry. Agricol was supplied with seed for 17 trials, Cortiva (Pannar & Pioneer) with 11 trials, Syngenta with one and Limagrain Zaad SA with three. Five trials were planted by the ARC-GC with different planting dates. Trial sites were selected by collaborators and the coworkers involved are listed in Table 2.

One trial of Cortiva not planted due to heavy rainfall at that site and one trial was not

harvested due to bad trial quality. One trial of Cortiva and one of Limagrain Zaad was not statistically successful and were not included in the results. Four trials of Agricol were cancelled due to water logging and bad germination and one trial of Syngenta was not harvested due to bad trials quality. Planting dates, amount of fertiliser applied, soil analyses and other agronomic details from some successful field trials are reported in Table 3. Grain yields were recorded on these trials while the period from planting to 50% flowering was recorded on five trials at Potchefstroom and two trials at Boskop with different planting dates. One trial at Cornelia, Hoopstad, Krondal, Lichtenburg, Makwassie, Marquard, Reita, Senkal and Wolmarnstad.

Yield data and seed samples were sent by collaborators to ARC-GC for analyses. Seed from selected trials sent to SAGL for oil and protein content analyses. Yield data from 27 field trials were subjected to analyses of variance. The regression line technique as described by Loubser and Grimbeek (1984) was used to calculate yield probabilities for cultivars at different yield potentials from the 27 trials.

Yield probabilities were also calculated for 15 cultivars that were evaluated in 44 trials during 2021/2022 and 2022/2023.

RESULTS

Days from planting to flowering

The mean number of days from planting to 50% flowering of cultivars (Table 3) ranged from 67 days for LG 50745, to 73 days AGSUN 5111 CLP Calculated across cultivars and planting dates, the average period from planting to flowering was 71 days. The longest days to flowering 82 days recorded at Potchefstroom planted on 21 January 2023.

Oil and protein concentration

Oil and protein concentrations of seed from eight trial localities, as analyzed by the Southern African Grain Laboratory NPC, are shown in Tables 4 and 5 respectively. The oil analyses were done with a Soxhlet apparatus while the protein analyses were done according to the Dumas method.

The oil content on "as is" basis for cultivars at the various localities varied from 39.04% to 48.44% with an overall mean of 41.90%. The highest mean oil concentration among localities was at Potchefstroom (planting date on 31 October 2022) with 44.29%. The locality with the lowest mean oil content of 39.12% was Boskop 3 planting date was 20 January 2023. The highest oil concentration among cultivars calculated across localities, was SY 3970 CL at 48.44% followed by LG 710 at 46.18%.70% of the tested hybrids have more than 40% oil content.

The average protein content varied from 13.24 to 16.24% among cultivars at the different localities. Among localities, Boskop 3 planting date was 20 January 2023, had the highest and Potchefstroom planted in 31 October 2022 the lowest protein content of 19.99 and 11.61% respectively. Calculated across localities, LG 5710 had the highest protein content (16. 24%) followed by AGSUN 5108 CLP (15.81) while PAN7 090 the lowest (13.24%).

Seed yield

The mean seed yield of cultivars at the respective localities is presented in Table 6. The highest locality mean yield of 3.57 t ha⁻¹ was obtained at Boskop 3, planted on 20 of January 2023 and the lowest of 1.11 t ha⁻¹, at Kroonstad planted on 7th of February 2023. The five best performing cultivars, in terms of average yield calculated over localities, were PAN 7080, PAN 7180 CLP, AGSUN 5270, P 65 LP 65 and PAN 7090. The overall mean yield for 2022/23 was 2.23 t ha⁻¹, 1.36 % higher than the mean yield of the last year.

Elven Clearfield and Clearfield Plus cultivars AGSUN 5103 CLP, AGSUN 5106 CLP, AGSUN 5108 CLP, AGSUN 5110, CLP AGSUN 5111 CLP, P 65 LP 54, P 65 LP 65, PAN 7102 CLP, PAN 7160 CLP, PAN 7180 CLP, and SY 3970 CL were entered. Seven of these cultivars namely PAN 7180 CLP, P 65 LP 65, PAN 7102 CLP, P 65 LP 54, AGSUN 5111 CLP, AGSUN 5106 CLP and PAN 7160 CLP have yields even or higher than the overall mean yield of all cultivars.

Oil yield

Oil yield per unit area is the product of grain yield and seed oil content and is resented in

Table 8. The oil yield for cultivars at the eight localities varied from 0.88 to 1.11 t ha⁻¹ with an overall mean of 1.02 t ha⁻¹. The locality with the highest mean oil yield was Boskop 3 planted in 20 January 2023 at 1.39 t ha⁻¹. P 65 LL 46 has the highest oil yield of 1.11 t ha⁻¹ followed by P 65 LL 02 with 1.10 t ha⁻¹

Parameters calculated from the analysis of variance

The trial mean yield, standard error of the trial mean and other parameters, calculated for each locality, are shown in Table 8. These parameters are presented for the evaluation of individual trials.

Regression line coordinates at different yield targets

Regression line coordinates at different yield targets, the overall mean yield, the intercept and slope from the regression line and yield stability (R² - parameter) are shown in Table 10. The coordinate values of a particular cultivar are estimates of the mean expected yield at corresponding yield potentials. These values take the cultivar X environment interaction into account but not the yield stability. These values are accordingly not reliable for cultivar selection. Individual cultivar regression lines for 2022/2023 are shown in Figure 1 and for the 15 cultivars evaluated in 2020/2021 and 2022/2023 in Figure 2.

The yield stability of cultivars varied up to 21-fold among cultivars (Table 9). Cultivars which had exceptionally high stabilities (R-parameter =1) were, AGSUN 58251, P 65 LP 65 and PAN 7160 CLP

Yield probability

The yield probability of a cultivar is the probability of exceeding the mean yield of all cultivars, at a particular yield potential. The yield probabilities of all 20 cultivars for 2022/2023 are shown in Table 10. It takes account of both the cultivar X environment interaction and the yield stability and is therefore a reliable measure for cultivar choice. Yield probabilities higher than or equal to 60% in Table 10 indicates which cultivars would be sensible choices at the various yield potentials

The yield probabilities of 15 cultivars evaluated in 44 trials in 2021/2022 and 2022/2023, and yield probabilities for the 15 cultivars evaluated in 63 trials are shown in Tables 11 and

12 respectively. Tables 10, 11 and 12 should be used jointly for cultivar selection.

Acknowledgements

Funding from the Oil and Protein Seed Development Trust and the participation of Agricol, Pannar, Pioneer, Syngenta and Limagrain Zaad SA, gratefully acknowledged.

References

LOUBSER, H.L. & GRIMBEEK, C.L., 1984. Kultivarevaluasie: 'n vergelyking tussen verskillende tegnieke. In: Notule van vergadering gehou deur die ondersoekkomitee na kultivarprogramme by die NIGG te Potchefstroom.

SOUTH AFRICAN SCLEROTINIA RESEARCH NETWORK: CULTIVAR EVALUATIONS 2022/2023

Project charter

Project title	Evaluations of South African soybean and sunflower cultivars to escape
	sclerotinia stem and head rot.
Principal investigator	Lisa Ann Rothmann
Industry Partner	Dr. Derick van Staden (industry partner, MP)
-	Mr. Koos Strydom (producer, FS)
	Agricultural Research Council – Grain Crops
	Seed companies
Collaborating institution(s)	University of the Free State
Students and postdoctoral	None
fellows	
Technicians	None
High-level strategic issue	Crop Protection
Beneficiaries	Oilseed producers

SUNFLOWER CULTIVAR EVALUATIONS AGAINST SCLEROTINIA SCLEROTIORUM

In Clocolan (FS) under natural disease pressure 14.3% and 3.4% mean sclerotinia prevalence were observed at planting date one and planting date two, respectively. In Delmas (MP) under artificial disease pressure, 12.5% and 18.6% mean sclerotinia prevalence were observed at planting date one and planting date two, respectively. Head and stem rot were not observed in the third planting at Clocolan or Delmas. Although, no significant differences were reported, categorisations of cultivars according to a head rot prevalence was performed using thresholds, greater than 40% were considered least tolerant, 39-11% moderately tolerate and <10% greatest tolerance of *Sclerotinia sclerotiorum*.

PAN 7100 greatest mean prevalence in Clocolan at the first planting date (~40.8%), however, it had a moderate response to head rot, 5.6% mean head rot prevalence, in the second planting date where the disease pressure was lower. In the second planting date, AGSUN 5106 CLP had the highest mean prevalence, 13.7%, and in the first planting date a moderate response of 8.1% mean head rot was observed. Three cultivars which had no head rot observed in the second planting had lower mean head rot prevalence in planting one, these have been indicated in bold (Table 11).

Under inoculated field conditions similar ranges of mean head rot were observed in Delmas, across both planting dates, 24.5 to 2.1% and 27.8 to 5.2%, respectively. Distinguishing cultivars is more complex under inoculated trials, however, PAN7160 CLP responded with consistently lower mean

head rot prevalence than other cultivars in Delmas, indicated by bold text (Table 12).

Table 8 ANOVA for screening 26 sunflower cultivars in Delmas (MP) under field conditions, planted on 13 December 2023, under natural conditions to tolerance of *Sclerotinia sclerotiorum*.

Sunflower | Delmas | Planting 1 ($\alpha = 0.01$)

Factor	df	SS	ms	F-value	Pr (>F)
Block	2	785.9	393.0	5.71	0.0678
Cultivar	19	2131.3	112.2	1.63	0.09828
Residual	38	2614.3	68.8		

Table 9 ANOVA for screening 26 sunflower cultivars in Delmas MP) under field conditions, planted on 21 December 2022, under natural conditions to tolerance of *Sclerotinia sclerotiorum*.

Sunflower | Delmas | Planting 2 ($\alpha = 0.05$)

Factor	df	SS	Ms	F-value	Pr (>F)
Block	2	431	215.3	1.683	0.199
Cultivar	19	2369	124.7	0.975	0.508
Residual	38	4862	127.9		

Table 10 ANOVA for screening 20 sunflower cultivars in Clocolan (FS) under field conditions, planted on 8 December 2022, under natural conditions to tolerance of *Sclerotinia sclerotiorum*.

Sunflower | Clocolan | Planting 1 ($\alpha = 0.01$)

Factor	df	SS	ms	F-value	Pr (>F)
Block	2	9	4.26	0.027	0.9731
Cultivar	19	5208	274.09	1.756	0.0689
Residual	38	5932	156.1		

Table 10 ANOVA for screening 20 sunflower cultivars in Cloclan (FS) under field conditions, planted on 22 December 2022, under natural conditions to tolerance of *Sclerotinia sclerotiorum*.

Sunflower | Clocolan | Planting 2 ($\alpha = 0.01$)

			•		•		
_	Factor	df	Ss		ms	F-value	Pr (>F)
	Block	2		136.1	68.03	2.25	0.119
	Cultivar	19		783.8	41.25	1.364	0.203
	Residual	38		1148.9	30.24		

Mean Head Rot Prevalence (%) 8.8 5.3 4.5 3.9 2.2 2.2 2.1 2.1 200 0.0 0.0 0.0 0.0 0.0 Planting 2 AGSUN 5106 CLP AGSUN 5108 CLP AGSUN 5103 CLP AGSUN 5111 CLP AGSUN 5110 CLP **PAN 7180 CLP PAN 7102 CLP PAN 7160 CLP AGSUN 5270 AGUARA** 6 P 65 LP 65 SY 3970 CL **PAN 7090** PAN 7100 P 65 LP 54 PAN 7080 P 65 LL 02 P 65 LL 46 LG 50745 LG 5710 Cultivar Table 11. Mean head rot response on cultivars planted in Clocolan (FS) under natural field conditions. Mean Head Rot Prevalence (%) 11.9 26.0 22.3 18.0 16.8 14.6 13.8 12.7 19.7 11.1 8.3 7.8 8.9 6.5 Planting 1 **AGSUN 5111 CLP** AGSUN 5108 CLP AGSUN 5103 CLP AGSUN 5110 CLP AGSUN 5106 CLP **PAN 7102 CLP PAN 7160 CLP PAN 7180 CLP AGSUN 5270 AGUARA** 6 SY 3970 CL P 65 LP 54 P 65 LL 46 P 65 LL 02 P 65 LP 65 PAN 7090 PAN 7080 PAN 7100 LG 50745 LG 5710 Cultivar

Table 12. Mean head rot response on cultivars planted in Delmas (MP) under inoculated field conditions.

	Planting 1		Planting 2
Cultivar	Mean Head Rot Prevalence (%)	Cultivar	Mean Head Rot Prevalence (%)
P 65 LL 46	24.5	P 65 LP 54	27.8
AGUARA 6	20.1	AGSUN 5270	25.9
AGSUN 5270	19.6	AGSUN 5110 CLP	24.5
P 65 LL 02	17.3	PAN 7160 CLP	23.7
PAN 7100	17.2	SY 3970 CL	23.1
SY 3970 CL	15.5	P 65 LL 02	21.7
P 65 LP 54	15.3	AGSUN 5108 CLP	20.6
AGSUN 5110 CLP	14.9	PAN 7080	19.8
PAN 7180 CLP	14.4	AGSUN 5103 CLP	17.5
LG 5710	13.7	AGUARA 6	16.9
AGSUN 5106 CLP	11.2	PAN 7180 CLP	15.2
PAN 7090	10.9	P 65 LP 65	15.1
LG 50745	10.7	LG 5710	14.2
P 65 LP 65	10.5	P 65 LL 46	12.7
PAN 7080	8.0	AGSUN 5111 CLP	12.4
AGSUN 5103 CLP	6.5	LG 50745	12.1
PAN 7102 CLP	6.5	PAN 7090	11.8
AGSUN 5111 CLP	3.3	PAN 7102 CLP	8.6
AGSUN 5108 CLP	3.0	AGSUN 5106 CLP	6.3
PAN 7160 CLP	2.1	PAN 7100	5.2

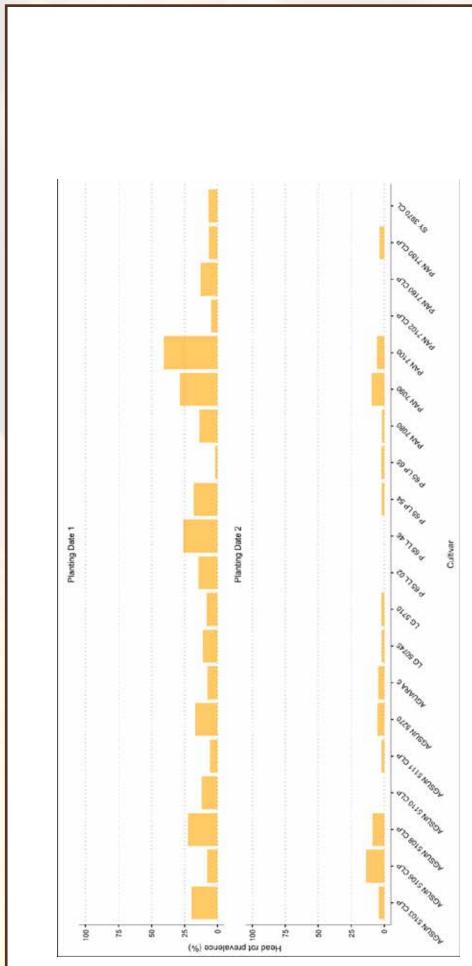


Figure 4. Mean head rot prevalence of sunflower cultivars screened against Sclerotinia sclerotiorum under natural conditions in Clocolan (FS) for the first and second planting on the 8 and 22 December 2022.

ď	,
S	S
,00/0	1
S	1
	Š
,	4
rkoro	5
ڋ	2
	5
5	?
ç	3
	ט
2	
.0	2
Č	5
2	2
ğ	20
7	5
2	=
ú	מ
<u>Q</u>	٥
=	=
oi+ile oc	3
_	2
.0	σ
+	5
>	~
2	5
2	2
2	5
Č	5
	2)
÷.	=
5	5
2	≦
=	٥
6	3
7	-
5	צ
- 0	ď
H	-

Company	Localities	Planting dates	Co-workers	E-mail address of co-worker
Agricol	Boskop2 Boskop1 Boskop3 Koster Lichtenburg Wolmaranstad Carnella Hoopstad Reitz Kroonstad Ventersdorp Marquard Senekal Marquard Kroondal Kroondal	17/11/2022 06/01/2023 23/01/2023 03/12/2022 01/12/2022 01/01/2023 30/01/2023 06/12/2022 06/12/2022 06/12/2022 22/12/2022 28/01/2022 28/01/2022 09/12/2022	Joubert Swanepoel ()	JSwanepoel@agricol.co.za
ARC-GCI	Potchefstroom	31/10/2022 21/11/2022 21/12/2022 12/01/2023 31/01/2023	William Makgoga & Jan Erasmus	<u>Makgogamw@arc.agric.za</u> <u>Erasmusj@arc.agric.za</u>
Corteva	Delmas Senekal Kroonstad Marquard Henneman Gerdau	18/11/2022 23/12/2022 08/12/2022 Not planted 28/12/2021 Not harvested 01/12/2022	Abre Pretorius, Phillip Fourie & Louis Schoonraad	<u>abre.pretorius@pannar.co.za</u> <u>phillip.fourie@pioneer.com</u> <u>louis.schoonraad@corteva.com</u>
Corteva	Lichtenburg Putfontein Gerdau-Oos Gerdau -Wes	06/01/2023 09/12/2022 07/12/2022 22/12/2022		
Lima Grain	Lichtenburg Wesselsbron Dwaalboom/Settlers Wesselsbron Wolmaranstad	06/01/2022 02/12/2021 05/12/2022 16/11/2022 08/12/2022	Anita Janeke	anita.janeke@limagrain.com
Syngenta	Kroonstad	05/01/2023	PieterTaljaard	Pieter. Taljaard@syngenta.com

 Table 2: Trial successful site information 2022/2023 season

Topsoil analysis (mg kg-1)

	į			i opsoli analysis (mg kg-1	anaiysi	l Gw) s	(d-6)		•			
				2				Mg	Fertiliser	Row		
	Planting	Plant	Soil		۵	Y	Ca		applied	width	Weed control	Net plot
Locality	date	Population	Classification	(NOE)					(Kg ha-1)	(cm)	and insecticides	size (m2)
Boskop 1	17/11/2022	40 000	-					_	_	0.91		11.83
Boskop 3	23/01/2023	40 000	-	-	-	-	-	-	-	0.91		11.83
Koster	2021/01/12	40 000	-	-	-	-	-	-	-	1.13		14.69
Lichtenburg	01/12/2022	40 000	-	_	-	-	-	-	-	0.91		11.83
Wolmaranstad	22/12/2022	40 000	-	-	-	1	-	-	-	0.91		11.83
Carnelia	01/01/2023	40 000	-	-	-	-	-	-	-	0.91		11.83
Hoopstad	30/01/2023	40 000	-	-	-	-	-	-	-	0.91		11.83
Reitz	04/11/2022	40 000	-	-	1	-	-	-	-	0.91		11.83
Kroonstad	07/02/2023	40 000	-	_	-	-	-	-	-	0.91		11.83
Senekal	21/12/2022	40 000	-	-	ı	1	-	1	-	0.91		11.83
Makwassie	22/12/2022	40 000	ı	1	ı		ı		1	0.91		11.83
Marquard	28/01/2023	40 000	-	-	-	-	-	-	1	0.91		11.83
Kroondal	05/01/2022	40 000	1	-	ı				ı	0.91		11.83
Potchefstroom	31/10/2022	38 000	Westleigh	6,91	49	345	1150	999	N:73,P:8.3, K:4.1	06.0	Metagen Gold and Mechanical weeding	12.60
Potchefstroom	21/11/2022	38 000	Clovelly	6,47	39	373	1050	513	N:74,P:8.3, K:4.1	06.0	Metagen Gold and Mechanical weeding	12.60
Potchefstroom	21/12/2022	38 000	Westleigh	6,47	39	373	1050	513	N:76,P:8.3, K:4.1	0.90	Metagen Gold and Mechanical weeding	12.60
Potchefstroom	12/01/2023	38 000	Clovelly	6,47	39	373	1050	513	N:76,P:8.3. K:4.1	06.0	Metagen Gold and Mechanical weeding	12.60
Potchefstroom	31/01/2023	38 000	Clovelly	6,58	54	255	1060	809	N:76,P:8.3, K:4.1	0.90	Metagen Gold and Mechanical weeding	12.60
Lichtenburg	05/12/2022	48 000	ı	ı	-	-	-	ı	-4:2:1 (37) Zn; 220kg/ha	0.91	-	0.6
Wesselsbron	06/11/2022	48.000							15:10:6 (31) + 9%S; 220kg/ha	0.91		9.0
Delmas	18/11/2022	40 000				-)			10.8
Senekal	23/12/2022	40 000										17.1
Kroonstad	08/12/2022	40 000										17.1
Gerdau-Oos	01/12/2022	40 000										18.0
Lichtenburg	06/01/2023	40 000										18.0
Putfontein Gerdau -Wes	09/12/2022	40 000										18.0
5555												

Table 3: Number of days from planting to 50 percent flowering of cultivars at selected localities and planting dates 2022/2023

Mean	71	7	69	20	73	69	72	29	89	71	69	71	72	72	71	71	20	72	72	20	71
Wolmarnsta d 2022-12-	71	71	99	29	72	89	69	99	29	72	64	20	72	69	71	20	89	20	71	89	69
2022-12-21 Senkal	99	29	63	64	29	64	29	63	99	99	64	89	65	99	99	64	89	29	29	65	99
Z022-11-04	74	20	69	20	22	72	74	29	89	72	20	74	9/	22	22	9/	74	74	74	74	73
Potch 12-10-6222	84	80	6/	80	87	80	82	9/	9/	29	22	84	87	87	80	28	82	82	87	74	82
Potch 2223-01-12	62	26	78	26	80	81	81	22	72	78	9/	82	81	80	83	83	81	81	78	75	62
Potch 2223-12-21	20	73	89	69	72	71	75	89	89	71	89	72	71	72	72	73	20	73	73	73	71
Potch 2223-11-21	29	89	63	49	29	92	29	92	63	29	63	64	89	29	61	29	49	89	29	29	99
Potch 2223-10-31	71	71	20	73	20	20	20	71	20	71	20	72	20	71	72	20	20	20	71	72	71
Marquard2 2023-01-23	74	73	74	74	75	71	74	69	20	71	73	74	75	73	74	71	20	75	74	73	73
Makwassie 2022-12-22	99	29	92	92	89	64	69	92	64	29	69	89	69	99	69	99	92	69	29	69	29
Lichtenburg 2022-12-01	99	99	64	99	20	99	69	64	92	99	92	29	20	89	69	29	92	20	69	29	29
Kroondal 2023-01-05	92	92	63	64	29	62	99	61	62	92	65	64	99	99	99	65	63	65	99	99	92
Hoopstad 2023-01-30	73	72	71	71	74	69	72	69	72	73	71	72	73	71	74	71	72	20	73	72	72
Cornelia 2023-01-10	72	72	20	71	22	20	9/	89	74	74	73	20	22	73	22	74	89	20	71	71	72
S0S3-01-S0 Boskob3	71	72	71	73	74	29	73	29	89	69	20	71	73	74	20	69	20	72	74	71	71
2022-11-17 Boskop1	69	69	65	29	20	65	69	63	99	20	99	99	65	69	99	65	63	99	69	69	29
Cultivar Name	AGSUN 5103 CLP	AGSUN 5106 CLP	AGSUN 5108 CLP	AGSUN 5110 CLP	AGSUN 5111 CLP	AGSUN 5270	Aguara6	LG 50745	LG 5710	P 65 LL 02	P 65 LL 46	P 65 LP 54	P 65 LP 65	PAN 7080	PAN 7090	PAN 7100	PAN 7102 CLP	PAN 7160 CLP	PAN 7180CLP	SY 39 70 CL	Mean

Table 4: The "as is" seed oil concentration (%) of cultivars at selected localities 2022/2023

Mean	39.77	40.29	39.39	40.29	39.04	42.88	44.16	43.82	46.18	44.09	43.88	39.20	40.89	40.47	42.29	42.45	39.53	41.52	39.40	48.44	41.90
5055/15/51 2euekal	39.04	39.36	39.65	37.50	40.63	40.00	44.55	42.85	44.23	43.61	41.46	39.37	43.27	38.52	42.01	40.93	37.98	43.21	42.04	47.95	41.41
∑0∑5\1∑\03 КОЗ1ЕК	42.19	42.62	41.34	40.44	41.77	43.56	44.13	43.98	46.74	44.89	38.85	42.95	42.19	42.72	44.32	43.52	39.96	41.86	40.64	47.55	42.81
S0SS\1S\SS WYKWASSIE	41.62	41.15	37.75	42.15	40.69	42.19	45.17	44.03	46.36	42.60	45.69	37.57	42.71	41.86	42.81	44.37	41.38	43.89	41.36	50.76	42.81
Potch5 2023/01/21	40.28	41.90	40.40	41.19	35.93	42.94	42.25	44.70	44.56	45.13	45.79	39.41	37.76	40.93	42.71	40.78	40.54	39.69	37.00	48.81	41.63
Potch4 2023/01/12 2023	37.60	37.08	35.96	37.69	37.08	42.70	41.58	43.51	41.97	47.04	42.39	38.10	39.28	37.65	40.51	40.25	38.56	41.81	40.97	46.22	40.40
Potch3 2022/12/21	40.08	42.94	41.06	42.72	41.87	45.27	44.13	44.84	49.42	41.01	45.36	40.21	41.62	41.53	43.04	44.41	39.15	38.85	36.30	50.73	42.73
Potch1 2022/10/31	41.19	41.48	41.25	44.03	39.55	47.14	47.96	46.37	51.58	45.41	48.43	39.56	41.32	43.61	44.84	44.21	43.11	43.24	40.62	50.88	44.29
5053\04\50 BO2KOb3	36.15	35.81	37.71	36.58	34.78	39.28	43.52	40.32	44.56	43.04	43.05	36.45	38.95	36.97	38.11	41.10	35.53	39.64	36.28	44.65	39.12
CULTIVAR	AGSUN 5103 CLP	AGSUN 5106 CLP	AGSUN 5108 CLP	AGSUN 5110 CLP	AGSUN 5111 CLP	AGSUN 5270	Aguara6	LG 50745	LG 5710	P 65 LL 02	P 65 LL 46	P 65 LP 54	P 65 LP 65	PAN 7080	PAN 7090	PAN 7100	PAN 7102 CLP	PAN 7160 CLP	PAN 7180CLP	SY 39 70 CL	Mean

Table 5: The "as is" seed protein concentration (%) of cultivars at selected localities 2022/2023

Potc1
11.36 15
11.24
14
14
14
12.
14
12.25
10.80
11.46 13.85
11.23 15.39
•
.36 1
14

Table 6: Mean seed yield (tha-1) of cultivars at each locality 2022/2023

.	2.17	56	17	60	27	35	97	2.17	07	28	24	28	32	39	30	24	28	25	37	2.12	23
2022-12-22 Average		1.19 2.2	31 2.	1.15 2.0	53 2.2	51 2.3	22 1.9	97 2.	2.	1.13 2.2	1.17 2.3	1.17 2.3	32 2.:	.36 2.:	2.	2.	93 2.2	23 2.3	.27 2.:	1.19 2.	21 2.2
2022-11-16 Wolmarnstad	1.24	.45 1.	.47 1.3	.68 1.	.03 1.4	56 1.5	.55 1.2	9	1.11		.69 1.7	.82 1.7	34 1.3	31 1.3	1.15	.07 1.13	40 0.9	.1. 89	.1] 76	.02 1.7	3 1.
2022-12-23	1	1	.85 1.4	.65 1.6	1	.03 1.5	.68 1.5	3 2.1	.05 1.28	4 1.70	.38 1.6	.04 1.8	.12 2.3	.92 2.3	86 1.92	.68 2.0	.02 2.4	.84 1.8	Τ.	.83 2.0	1 1.78
Z022-12-12	9 1.57	8 2.10	1	_	3 1.87	2.	1	8 1.73	2.	7 2.14	2.	2.	. 2	1	1.	1	2.	1	1.76	7	4 1.9
2022-11-04 Senkal	0 2.39	5 2.38	4 2.25	0 2.25	1 2.33	9 2.56	9 2.19	9 2.38	3 2.00	7 2.37	1 2.10	3 2.42	5 2.54	1 2.32	3 2.29	4 2.27	3 2.73) 2.62	2 2.27	9 2.18	8 2.34
2022-12-09 Zii9A	1 2.90	2.35) 2.74	1.90	3 2.5	2.49	2.39	1.99	1.63	3 2.27	. 1.6′	3 2.73	2.55	2.71	3 2.76	3 2.24	3 2.28	, 2.80	3 2.82	1.89	2.38
2223-01-21 Putfontein	0.94	1.22	0.89	0.86	1.16	1.52	0.97	1.14	06:0	1.46	1.42	1.28	1.50	1.84	1.38	1.68	1.28	1.47	1.66	1.35	1.30
Potch	1.27	1.69	1.63	1.84	1.89	2.25	1.63	2.03	2.02	2.23	1.94	1.96	2.12	1.88	2.09	1.79	1.81	1.20	1.76	1.77	1.84
Potch 2223-01-12	1.80	1.81	1.57	1.69	1.69	1.84	1.62	1.62	1.62	1.95	1.56	2.13	1.78	1.93	2.02	1.67	1.85	2.05	2.17	1.80	1.81
Potch 2223-12-21	1.78	1.89	1.83	2.17	1.99	2.23	2.14	2.01	2.11	2.02	2.42	1.97	1.94	2.24	2.17	2.16	2.13	2.05	1.98	1.98	2.06
Potch 2223-11-21	2.56	2.50	2.67	2.64	2.76	2.57	2.81	3.23	3.27	2.72	2.93	3.04	2.70	3.07	2.65	2.98	2.81	2.85	3.18	2.69	2.83
Potch 2223-10-31	2.86	2.82	2.63	2.56	2.85	3.07	2.22	2.90	3.31	3.32	3.22	3.00	3.15	2.91	2.89	3.32	3.14	3.26	2.99	2.98	2.97
Marquard2 2023-01-23	2.70	2.57	2.34	2.13	2.59	2.27	2.05	2.06	2.03	2.79	2.26	2.58	2.14	2.32	2.17	2.15	2.33	2.36	1.74	2.05	2.28
Makwassie 2022-12-22	2.15	2.60	2.66	2.17	3.19	2.83	1.17	2.46	2.02	2.23	2.87	2.94	2.60	2.87	2.62	2.60	2.75	2.55	3.15	1.94	2.52
Lichtenburg 2023-01-06	1.95	1.89	1.90	1.73	2.21	1.56	2.39	1.99	2.24	2.00	2.46	1.38	2.21	2.67	2.43	1.71	1.70	2.08	1.80	1.67	2.00
Lichtenburg 20-21-505	2.10	2.07	1.75	1.64	2.22	1.90	1.89	2.42	1.90	1.65	1.71	2.17	2.28	2.35	2.29	2.28	1.28	2.08	2.65	2.23	2.04
Lichtenburg 2022-12-01	3.39	3.51	3.24	2.97	3.52	3.63	2.80	3.10	3.03	3.18	3.59	3.29	3.34	3.35	3.30	3.46	3.34	3.57	3.58	3.03	3.31
Kroonstad 2023-02-07	96.0	1.37	1.38	1.12	1.11	1.22	96.0	1.20	1.15	1.46	1.18	0.94	1.06	0.91	1.12	1.04	96.0	66.0	1.06	1.01	1.11
Kroondal 2023-01-05	1.63	1.52	1.45	1.34	1.32	1.47	1.08	1.28	1.24	1.31	1.43	1.46	1.38	1.44	1.48	1.46	1.46	1.49	1.27	1.24	1.39
Koster 2022-12-03	2.52	2.57	2.37	2.39	2.77	2.19	2.19	2.27	2.13	2.19	2.44	2.24	2.41	2.40	2.40	2.32	2.11	2.14	2.67	2.10	2.34
Hoopstad 2023-01-30	3.23	3.44	2.89	2.89	2.91	3.32	2.32	2.75	2.74	3.44	2.77	2.51	3.21	3.62	3.42	2.87	3.56	3.12	3.07	2.50	3.03
Gerdau-Wes 2022-12-22	2.56	2.40	2.67	3.04	2.30	2.55	2.17	2.48	2.01	2.36	3.08	2.35	2.98	2.81	2.66	2.63	2.56	2.45	2.73	3.12	2.60
Gerdau-Oos 2022-12-07	2.48	3.17	1.86	2.43	2.34	2.86	2.70	1.53	2.50	2.63	1.94	2.79	2.87	2.63	2.53	2.23	1.95	2.33	2.13	3.11	2.45
Delmas 2022-11-18	1.93	2.33	2.47	2.79	1.92	2.94	2.78	2.39	2.09	2.76	2.29	2.50	2.41	2.68	1.80	2.40	3.19	2.29	3.01	2.07	2.45
Cornelia 2023-01-10	1.63	1.71	1.80	1.57	2.02	2.08	1.32	1.40	1.53	1.93	1.69	2.05	1.48	1.75	1.56	1.72	1.61	1.62	1.65	1.34	1.67
Coligny 2022-12-01	2.26	2.28	2.40	2.27	2.08	2.56	2.16	2.45	2.20	2.14	2.41	2.49	2.61	2.22	2.51	2.40	2.55	2.65	2.46	2.78	2.39
S0S3-01-S0 Boskob3	3.57	3.79	3.61	3.42	3.68	3.71	2.75	3.42	3.31	3.75	3.55	3.80	3.66	3.76	3.88	3.55	3.88	3.72	3.69	2.97	3.57
S0SS-11-12 Boskobj	2.93	2.53 3	2.92	2.18	3.46	2.72	1.96	3.17 3	2.46 3	2.52 3	2.40	2.44 3	1.99	2.27 3	2.76	2.58 3	3.03	2.15	3.44 3	2.39 2	2.62 3
Cultivar\ Locality	AGSUN5103CLP	AGSUN5106CLP	AGSUN5108CLP	AGSUN5110CLP	AGSUN5111CLP	AGSUN5270	Aguara6	LG50745	LG5710 2	P65LL02 2	P65LL46	P65LP54	P65LP65	PAN7080	PAN7090	PAN7100	PAN7102CLP	PAN7160CLP	PAN7180CLP	SY3970CL 2	MEAN

Table 7: Oil yield (t ha-1) of cultivars at selected localities 2022/2023

Меап	0.91	0.98	0.91	0.93	0.99	1.10	0.88	1.04	1.08	1.10	1.11	1.00	1.03	1.03	1.07	1.05	1.00	1.02	1.02	1.07	1.02
5055\15\51 2eueksl	0.93	0.94	0.89	0.84	0.95	1.02	0.98	1.02	0.88	1.03	0.87	0.95	1.10	0.89	96.0	0.93	1.04	1.13	0.95	1.05	0.97
X0SZ\12\03	1.06	1.10	0.98	0.97	1.16	0.95	0.97	1.00	1.00	0.98	0.95	96.0	1.02	1.03	1.06	1.01	0.84	06.0	1.09	1.00	1.00
S0SS\JS\SS WPKMP2SIE	0.89	1.07	1.00	0.91	1.30	1.19	0.53	1.08	0.94	0.95	1.31	1.10	1.11	1.20	1.12	1.15	1.14	1.12	1.30	0.98	1.07
Potch5 \2\\0\8202	0.51	0.71	99.0	0.76	0.68	0.97	69.0	0.91	06.0	1.01	0.89	0.77	08.0	0.77	0.89	0.73	0.73	0.48	0.65	0.86	0.77
Potch4 2023/01/12 2023	0.68	0.67	0.56	0.64	0.63	0.79	0.67	0.70	0.68	0.92	99.0	0.81	0.70	0.73	0.82	0.67	0.71	98.0	0.89	0.83	0.73
Potch3 2022/12/21	0.71	0.81	0.75	0.93	0.83	1.01	0.94	06.0	1.04	0.83	1.10	0.79	0.81	0.93	0.93	96.0	0.83	08.0	0.72	1.00	0.88
Potch1 2022/10/31	1.18	1.17	1.08	1.13	1.13	1.45	1.06	1.34	1.71	1.51	1.56	1.19	1.30	1.27	1.30	1.47	1.35	1.41	1.21	1.52	1.32
5053/01/50 BO2KOb3	1.29	1.36	1.36	1.25	1.28	1.46	1.20	1.38	1.47	1.61	1.53	1.39	1.43	1.39	1.48	1.46	1.38	1.47	1.34	1.33	1.39
	AGSUN 5103 CLP	AGSUN 5106 CLP	AGSUN 5108 CLP	AGSUN 5110 CLP	AGSUN 5111 CLP	AGSUN 5270	Aguara6	LG 50745	LG 5710	P 65 LL 02	P 65 LL 46	P 65 LP 54	P 65 LP 65	PAN 7080	PAN 7090	PAN 7100	PAN 7102 CLP	PAN 7160 CLP	PAN 7180CLP	SY 39 70 CL	Mean

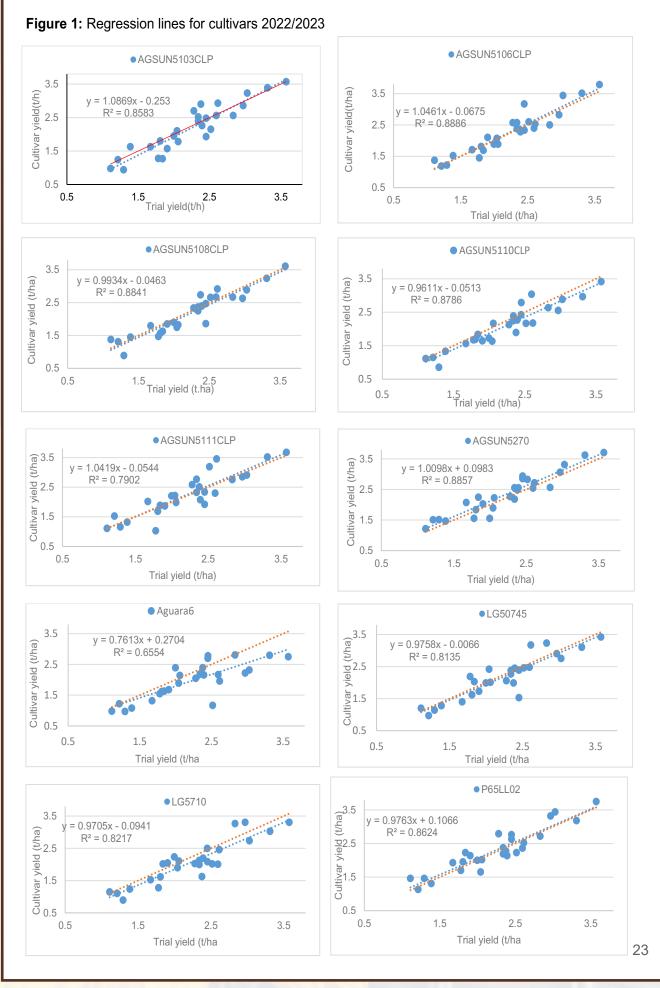
Table 8: Parameters calculated from the analysis of variance for yield data at each locality

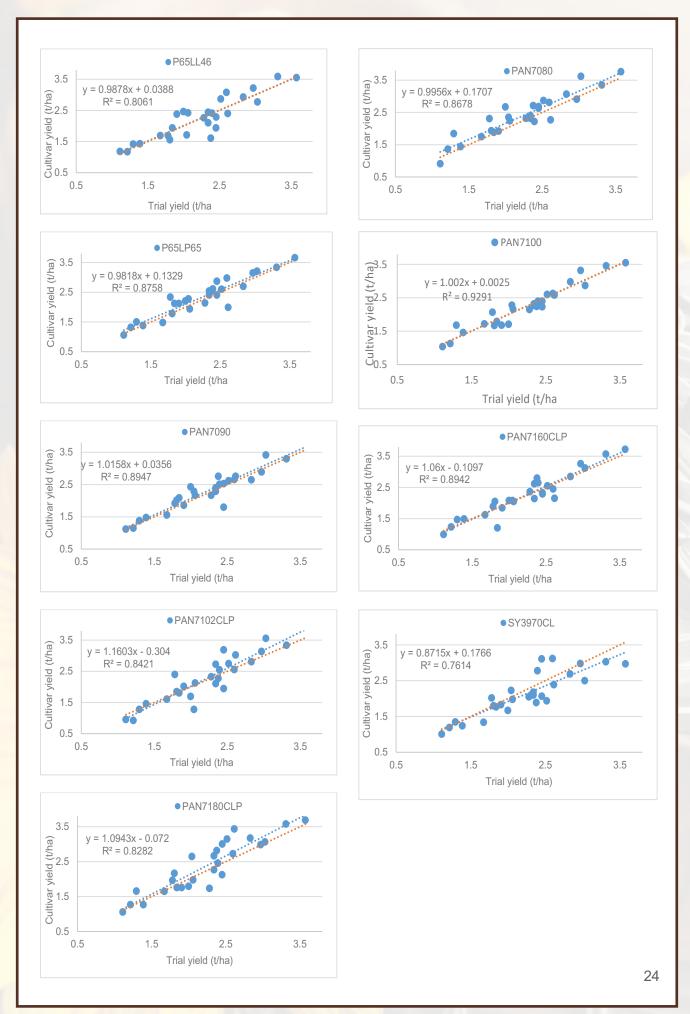
Locality	Mean (t/ha)	SE	CV (%)	GCV	t	SE(t)	tn
Boskop1	2.6	0.24	16.2	13.8	0.42	0.14	0.68
Boskop3	3.6	0.18	8.5	6.4	0.36	0.15	0.63
Coligny	2.4	0.18	12.7	3.0	0.05	0.14	0.14
Cornelia	1.7	0.13	13.0	11.0	0.42	0.14	0.68
Delmas	2.5	0.20	14.1	13.4	0.48	0.14	0.73
Gerdau-Oos	2.5	0.26	18.2	13.8	0.37	0.15	0.64
Gerdau-Wes	2.6	0.25	16.4	6.8	0.15	0.15	0.35
Hoopstad	3.0	0.34	19.3	5.4	0.07	0.14	0.18
Koster	2.3	0.16	12.2	4.1	0.10	0.14	0.25
Kroondal	1.4	0.11	13.9	4.4	0.09	0.14	0.23
Kroonstad	1.1	0.13	19.7	7.9	0.14	0.15	0.33
Lichtenburg (Ag)	3.3	0.19	10.1	4.0	0.14	0.15	0.33
Lichtenburg (Lim)	2.0	0.20	17.1	12.6	0.35	0.15	0.62
Lichtenburg (PAN)	2.0	0.22	18.9	12.9	0.32	0.15	0.59
Makwassie	2.5	0.26	17.8	15.6	0.44	0.14	0.70
Marquard2	2.3	0.16	12.5	9.0	0.34	0.15	0.61
Potch1	3.0	0.17	10.1	7.4	0.35	0.15	0.62
Potch2	2.8	0.16	9.7	5.9	0.27	0.15	0.53
Potch3	2.1	0.12	10.3	4.4	0.16	0.15	0.36
Potch4	1.8	0.13	12.9	7.0	0.23	0.15	0.47
Potch5	1.8	0.20	18.8	10.1	0.22	0.15	0.46
Putfontein	1.3	0.13	17.9	19.5	0.54	0.13	0.78
Reitz	2.4	0.23	17.0	13.6	0.39	0.14	0.66
Senkal	2.3	0.17	12.7	1.4	0.01	0.13	0.03
Senekal	1.9	0.16	14.9	6.2	0.15	0.15	0.35
Wesselsbron	1.8	0.18	17.3	18.9	0.54	0.13	0.78
Wolmarnstad	1.2	0.12	17.7	6.4	0.12	0.15	0.29

 Table 9: Regression line coordinates at different yield potentials 2022/2023

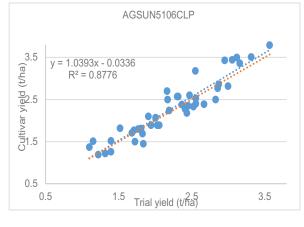
		Yield	l potentia	al (t ha ⁻¹))		Mean	Intercept	Slope	Fprob	R^2
Cultivar	1	1,5	2	2,5	3	3,5	(t ha ⁻¹)	Шенсері	Slope	Τρίου	IX
AGSUN 5103 CL	8.0	1.4	1.9	2.5	3.0	3.6	2.2	-0.25	1.09	<0.00	0.86
AGSUN 5106 CL	1.0	1.5	2.0	2.6	3.1	3.6	2.3	-0.07	1.0	<0.00	0.89
AGSUN 5108 CL	0.9	1.4	1.9	2.4	2.9	3.4	2.2	-0.05	0.99	<0.00	88.0
AGSUN 5110 CL	0.9	1.4	1.9	2.4	2.8	3.3	2.1	-0.05	0.96	<0.00	88.0
AGSUN 5111 CL	1.0	1.5	2.0	2.6	3.1	3.6	2.3	-0.05	1.04	<0.00	0.79
AGSUN 5270	1.1	1.6	2.1	2.6	3.1	3.6	2.4	0.10	1.01	<0.00	0.89
Aguara6	1.0	1.4	1.8	2.2	2.6	2.9	2.0	0.27	0.76	<0.00	0.65
LG 50745	1.0	1.5	2.0	2.4	2.9	3.4	2.2	-0.01	0.98	<0.00	0.81
LG 5710	0.9	1.4	1.9	2.3	2.8	3.3	2.1	-0.09	0.97	<0.00	0.82
P 65 LL 02	1.1	1.6	2.1	2.6	3.1	3.5	2.3	0.11	0.98	<0.00	0.86
P 65 LL 46	1.0	1.5	2.0	2.5	3.0	3.5	2.2	0.04	0.99	<0.00	0.81
P 65 LP 54	1.1	1.6	2.1	2.6	3.1	3.6	2.3	0.05	1.00	<0.00	0.86
P 65 LP 65	1.1	1.6	2.1	2.6	3.1	3.6	2.3	0.13	0.98	<0.00	88.0
PAN 7080	1.2	1.7	2.2	2.7	3.2	3.7	2.4	0.17	1.00	<0.00	0.87
PAN 7090	1.1	1.6	2.1	2.6	3.1	3.6	2.3	0.04	1.02	<0.00	0.90
PAN 7100	1.0	1.5	2.0	2.5	3.0	3.5	2.2	0.00	1.00	<0.00	0.93
PAN 7102 CLP	0.9	1.4	2.0	2.6	3.2	3.8	2.3	-0.30	1.16	<0.00	0.84
PAN 7160 CLP	1.0	1.5	2.0	2.5	3.1	3.6	2.3	-0.11	1.06	<0.00	0.89
PAN 7180CLP	1.0	1.6	2.1	2.7	3.2	3.8	2.4	-0.07	1.09	<0.00	0.83
SY 39 70 CL	1.1	1.5	1.9	2.4	2.8	3.2	2.1	0.18	0.87	<0.00	0.76

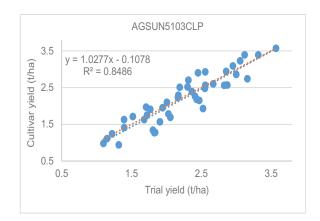
Table 10: Yield probability (%) of cultivars for 2022/2023 at different yield potentials

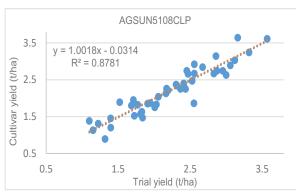

Cultivar	Yield potential (t ha ⁻¹)						Regression line		
	1	1,5	2	2,5	3	3,5	F prob	R ²	
AGSUN 5103 CLP	30	35	40	47	53	59	<0.001	0.86	
AGSUN 5106 CLP	47	52	55	60	63	67	<0.001	0.89	
AGSUN 5108 CLP	40	40	38	38	37	37	<0.001	0.88	
AGSUN 5110 CLP	36	32	29	26	24	22	<0.001	0.88	
AGSUN 5111 CLP	49	51	53	56	58	60	<0.001	0.79	
AGSUN 5270	67	69	70	71	71	71	<0.001	0.89	
Aguara6	53	40	28	18	11	7	<0.001	0.65	
LG 50745	46	45	43	42	41	40	<0.001	0.81	
LG 5710	35	33	30	29	27	27	<0.001	0.82	
P 65 LL 02	63	62	61	59	58	56	<0.001	0.86	
P 65 LL 46	54	54	53	53	51	51	<0.001	0.81	
P 65 LP 54	57	57	58	58	57	57	<0.001	0.86	
P 65 LP 65	67	66	65	63	61	59	<0.001	0.88	
PAN 7080	74	75	75	75	75	74	<0.001	0.87	
PAN 7090	60	62	64	66	67	68	<0.001	0.90	
PAN 7100	50	50	50	50	50	50	<0.001	0.93	
PAN 7102 CLP	34	43	52	62	71	77	<0.001	0.84	
PAN 7160 CLP	42	47	52	57	61	65	<0.001	0.89	
PAN 7180CLP	52	58	63	69	73	77	<0.001	0.83	
SY 39 70 CL	56	49	40	33	26	21	<0.001	0.76	

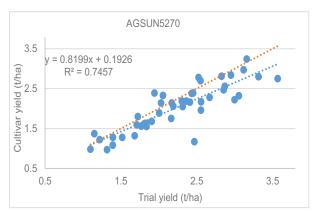

Table 11: Yield probability (%) of cultivars 2021/2022 and 2022/2023 at different yield potentials

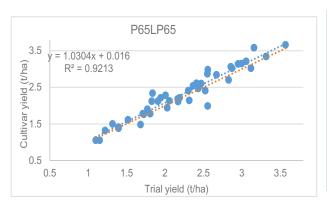
Cultivar	Yield potential (t ha ⁻¹)						Regression line		
	1	1,5	2	2,5	3	3,5	F prob	R ²	
AGSUN 5103 CLP	39	41	43	46	47	50	<0.001	0.85	
AGSUN 5106 CLP	52	55	58	61	64	67	<0.001	0.87	
AGSUN 5108 CLP	45	45	45	45	45	45	<0.001	0.88	
AGSUN 5270	62	64	66	67	69	70	<0.001	0.88	
Aguara 6	51	40	29	20	13	8	<0.001	0.75	
LG 5710	40	36	31	28	24	21	<0.001	0.79	
P 65 LL 02	52	53	55	56	58	59	<0.001	0.87	
P 65 LP 54	62	59	55	52	48	45	<0.001	0.88	
P 65 LP 65	60	64	66	70	71	74	<0.001	0.92	
PAN 7080	62	65	67	70	71	72	<0.001	0.85	
PAN 7100	58	57	54	52	50	48	<0.001	0.93	
PAN 7102 CLP	32	41	51	61	71	78	<0.001	0.88	
PAN 7160 CLP	46	56	63	72	78	84	<0.001	0.92	
PAN 7180 CLP	56	59	61	64	65	67	<0.001	0.87	
SY 3970 CL	44	37	31	25	20	17	<0.001	0.71	

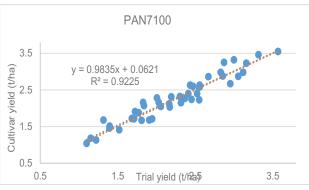

Table 12: Yield probability (%) of cultivars for three years' data 2020/2021 to 2022/2023 at different yield potentials

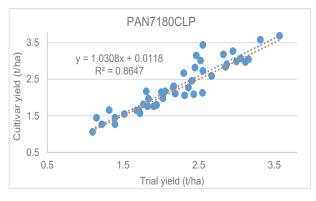

			Regression line					
	1	1,5	2	2,5	3	3,5	Fprob	R^2
AGSUN 5103 CLP	37	41	46	51	56	61	<0.001	0.83
AGSUN 5106 CLP	47	52	57	62	66	71	<0.001	0.88
AGSUN 5108 CLP	43	43	41	41	39	39	< 0.001	0.89
AGSUN 5270	60	63	65	68	70	72	< 0.001	0.89
Aguara 6	50	42	33	25	18	14	< 0.001	0.78
LG 5710	37	36	35	33	32	31	< 0.001	0.81
P 65 LL 02	49	50	50	52	52	53	< 0.001	0.86
P 65 LP 54	66	62	58	53	48	44	< 0.001	0.84
P 65 LP 65	57	59	59	61	61	63	< 0.001	0.89
PAN 7080	56	61	64	68	71	74	< 0.001	0.86
PAN 7100	63	63	61	61	59	58	< 0.001	0.92
PAN 7102 CLP	43	49	53	59	63	68	< 0.001	0.86
PAN 7160 CLP	58	65	69	74	77	81	< 0.001	0.92
PAN 7180 CLP	56	59	61	63	65	67	< 0.001	0.86
SY 3970 CL	46	39	31	24	18	14	<0.001	0.67

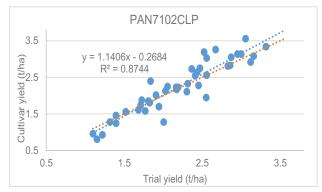


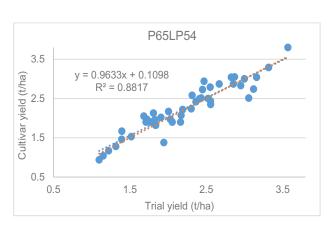


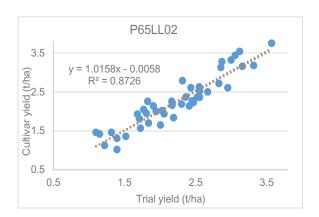

Figure 2: Regression lines for cultivars 2021/2022 & 2022/2023

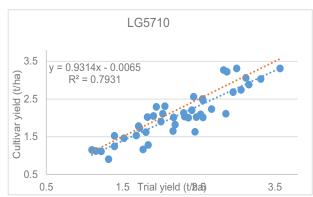


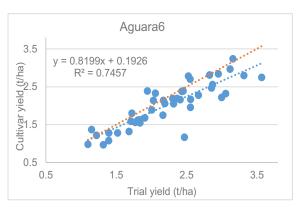


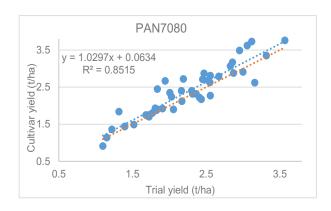


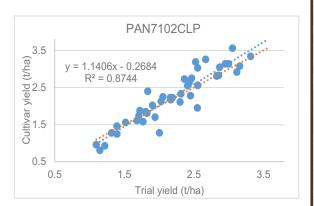


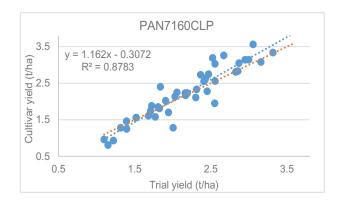







25





STAATSKOERANT, 22 JANUARIE 2016

No. 39613 53

DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES

NO. 45 22 JANUARY 2016

AGRICULTURAL PRODUCT STANDARDS ACT, 1990 (ACT No.119 OF 1990)

REGULATIONS RELATING TO THE GRADING, PACKING AND MARKING OF SUNFLOWER SEED INTENDED FOR SALE IN THE REPUBLIC OF SOUTH AFRICA

The Minister of Agriculture, Forestry and Fisheries under section 15 of the Agricultural Product Standards Act 119 of 1990, has

- (a) made the regulations in the Schedule;
- (b) determined that the said regulations shall come into operation on the date of publication thereof; and
- (c) read together with section 3(1) of the said Act, repealed the Regulations published by Government Notice No. R 477 of 20 June 2014.

SCHEDULE

Definitions

1. In these regulations any word or expression to which a meaning has been assigned in the Act, shall have that meaning and, unless the context otherwise indicates--

"animal filth" means dead rodents, dead birds and dung;

"bag" means a bag manufactured from--

- (a) jute or phormium or a mixture of jute and phormium; or
- (b) polypropylene that compiles with SANS specification CKS632 1246: 2012;

"bulk container" means any vehicle or container in which bulk sunflower seed is transported or stored;

"consignment" means--

- (a) a quantity of sunflower seed of the same class, which belongs to the same owner, delivered at any one time under the same consignment note, delivery note or receipt note, or delivered by the same vehicle or bulk container, or loaded from the same bulk storage structure or from a ship's hold; or
- (b) in the case where a quantity referred to in paragraph (a), is subdivided into a grade, each such quality of such grade.

54 No. 39613

GOVERNMENT GAZETTE, 22 JANUARY 2016

"container" means a bag or a bulk container;

"damaged sunflower seed" means sunflower seed or portion thereof which is visibly discoloured as a result of external heat or heating due to internal fermentation;

"foreign matter" means--

- (a) loose and empty shells above the sieve that occur in the consignment concerned; and
- (b) all matter other than sunflower seed and the achene of sunflower seed above the standard sieve. Coal, dung, glass and metal shall not be present in the consignment at all.
- "insect" means any live grain insect that is injurious to stored sunflower seed as well as other grain, irrespective of the stage of development of that insect;
- "poisonous seeds" mean seeds or part of seeds of plant species that in terms of the Foodstuffs
 Cosmetics and Disinfectants Act 64 of 1972, may represent a hazard to human or animal health
 when consumed, including seeds of Argemone mexicana L, Convolvulus spp., Crotalaria spp.,
 Datura spp., Ipomoea spp., Lolium temulentum, Ricinus communis or Xanthium spp;
- "sclerotia" means hard masses of fungal tissue produced by fungus Sclerotinia sclerotiorum. The sclerotia vary in size and form and consist of a dark black exterior, a white interior and a rough surface texture;

"screenings" means all material that passes through a standard sieve;

"standard sieve" means a slotted sieve--

- (a) with a flat bottom of metal sheet of 1,0 mm thickness with apertures 12.7 mm long and 1.8 mm wide with rounded ends (±0.03 mm). The spacing between the slots in the same row must be 2.43 mm wide and the spacing between the rows of slots must be 2.0 mm wide. The slots must be alternately oriented with a slot always opposite the solid inter segment of the next row of slots;
- (b) of which the upper surface of the sieve is smooth;
- (c) with a round frame of suitable material with an inner diameter of at least 300 mm and at least 50 mm high; and
- (d) that fits onto a tray with a solid bottom and must be at least 20 mm above bottom of the tray.

"sunflower seed" means the seed of the plant species of Helianthus annuus (L); and

"the Act" means the Agricultural Product Standards Act 119 of 1990.

Restrictions on sale of sunflower seed

- (1) No person shall sell sunflower seed in the Republic of South Africa--
 - (a) unless the sunflower seed are sold according to the classes set out in regulation 3:

STAATSKOERANT, 22 JANUARIE 2016

No. 39613 **55**

- (b) unless the sunflower seed comply with the standards for the classes concerned set out in regulation 4;
- (c) unless the sunflower seed, where applicable, comply with the grades of sunflower seed and the standards for grades set out in regulation 5 and 6 respectively;
- (d) unless the sunflower seed are packed in accordance with the packing requirements set out in regulation 7;
- (e) unless the container or sale documents, as the case may be, are marked in accordance with the marking requirements set out in regulation 8; and
- (f) if such sunflower seed contains a substance that renders it unfit for human or animal consumption or for processing into or utilisation thereof as food or feed.
- (2) The Executive Officer may grant written exemption, entirely or partially, to any person on such conditions as he or she may deem necessary, from the provisions of sub-regulation (1): Provided that such exemption is done in terms of section 3(1) (c) of the Act.

PART I

QUALITY STANDARDS

Classes of sunflower seed

- 3. Sunflower seed shall be classified as--
 - (a) Class FH;
 - (b) Class FS; and
 - (c) Class Other Sunflower Seed.

Standards for classes of sunflower seed

- (1) A consignment of sunflower seed shall --
 - (a) be free from a musty, sour, khaki bush or other undesired odour;
 - (b) be free from any substance that renders it unsuitable for human or animal consumption or for processing into or utilisation as food or feed;
 - not contain more poisonous seeds than permitted in terms of the Foodstuffs, Cosmetics and Disinfectants Act 54 of 1972;
 - (d) shall be free from stones, glass, metal, coal or dung;
 - (e) with the exception of Class Other Sunflower seed, be free from insects;
 - (f) with the exception of Class Other Sunflower seed, have a moisture content of not more than 10 percent; and
 - (g) be free from animal filth.

56 No. 39613

GOVERNMENT GAZETTE, 22 JANUARY 2016

- (2) A consignment of sunflower seed shall be classified as --
 - (a) Class FH if it-
 - consist of at least 80 percent (m/m) sunflower seed of a cultivar with a high oil content; and
 - (ii) complies with the standard for Grade 1 set out in regulation 6.
 - (b) Class FS if it-
 - consist of at least 80 percent (m/m) sunflower seed of a cultivar with a low oil content; and
 - (ii) complies with the standards for Grade 1 set out in regulation 6.
 - (c) Class Other Sunflower Seed if it does not comply with the requirements for Class FH or Class FS.

Grades for sunflower seed

- 5. (1) There is only one grade for the Classes FH and FS Sunflower Seed, namely Grade 1.
 - (2) No grades are determined for Class Other Sunflower seed.

Standards for grades of sunflower seed

6. A consignment of Grade 1 sunflower seed shall be graded as Grade 1 if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 2 of the said table opposite the deviation concerned.

PART II

PACKING AND MARKING REQUIREMENTS

Packing requirements

7. Sunflower seed of different classes and grades shall be packed in different containers or stored separately.

Marking requirements

8. Every container or the accompanying sale documents of a sunflower seed shall be marked or endorsed with the class and, where applicable, the grade of the sunflower seed.

PART III

SAMPLING

Obtaining a sample

9. (1) A representative sample of a consignment of sunflower seed shall-

- No. 39613 **57**
- (a) in the case of sunflower seed delivered in bags and subject to regulation 10, be obtained by sampling at least 10 percent of the bags, chosen from that consignment at random, with a bag probe: Provided that at least 25 bags in a consignment shall be sampled and where a consignment consists of less than 25 bags, all the bags in that consignment shall be sampled; and
- (b) in the case of sunflower seed delivered in bulk and subject to regulation 10, be obtained by sampling that consignment throughout the whole depth of the layer, in at least six different places, chosen at random in that bulk quantity, with a bulk sampling apparatus.
- (2) The collective sample obtained in sub-regulation (1) (a) or (b) shall--
 - (a) have a total mass of at least 5 kg; and
 - (b) be thoroughly mixed by means of dividing before further examination.
- (3) If it is suspected that the sample referred to in sub regulation (1)(a) is not representative of that consignment, an additional five percent of the remaining bags, chosen from that consignment at random, shall be emptied into a suitable bulk container and sampled in the manner contemplated in sub regulation(1)(b).
- (4) If it is suspected that the sample referred to in sub-regulation (1) (b) is not representative of that consignment, an additional representative sample shall be obtained by using an alternative sampling pattern, apparatus or method.
- (5) A sample taken in terms of these regulations shall be deemed to be representative of the consignment from which it was taken.

Sampling if contents differ

- 10. (1) If, after an examination of the sunflower seed taken from different bags in a consignment in terms of regulation 9(1), it appears that the contents of those bags differ substantially--
 - (a) the bags concerned shall be separated from each other;
 - (b) all the bags in the consignment concerned shall be sampled in order to do such separation; and
 - (c) each group of bags with similar contents in that consignment shall for the purpose of these regulations be deemed to be separate consignment.
- (2) If, after the discharge of a consignment of sunflower seed in bulk has commenced, it is suspected that the consignment could be of a class or grade other than that determined by means of the initial sampling, the discharge shall immediately be stopped and that part of the consignment remaining in the bulk container, as well as the sunflower seed already in the collecting tray, shall be sampled anew with a bulk sampling apparatus or by catching at least 20 samples at regular intervals throughout the whole off loading period with a suitable container from the stream of sunflower seed that is flowing in bulk.

GOVERNMENT GAZETTE, 22 JANUARY 2016

Working sample

11. (1) A working sample of sunflower seed shall be obtained by dividing the representative sample of the consignment according to the latest revision of the ICC (International Association for Science and Technology) 101/1 method.

PART IV

INSPECTION METHODS

Determination of undesired odour, harmful substances, poisonous seeds, stones, glass, metal, coal, dung, insect and animal filth

- 12. A consignment or sample of a consignment shall be assessed sensorially or chemically analysed in order to determine whether it--
 - (a) has a musty, sour, khaki bush or other undesired odour;
 - (b) contains a substance that renders it unsuitable for human or animal consumption or processing into or utilization thereof as food or feed;
 - (c) contains poisonous seeds;
 - (d) contains stones, glass, metal, coal or dung;
 - (e) contains any insects; and
 - (f) contains animal filth.

Determination of moisture content

13. The moisture content of a consignment of sunflower seed may be determined according to any suitable method: Provided that the result thus obtained is in accordance with the maximum permissible deviation for a class 1 moisture meter as detailed in ISO 7700/2, based upon result of the 3 hour, 103°C oven dried method [the latest revision of the AACCI ("American Association of Cereal Chemists International") Method 44-15].

Determination of percentage screenings

- 14. The percentage screenings in a consignment of sunflower seed is determined as follows:
 - (a) Obtain a working sample of at least 50g from a representative sample of the consignment.
 - (b) Place the sample on a standard sieve; screen the sample by moving the sieve 50 strokes to and fro, alternately away from and towards the operator of the sieve, in the same direction as the long axes of the slots of the sieve. Move the sieve, which rests on a table or other suitable smooth surface, 250 mm to 460 mm away from and towards the operator with each stroke. The prescribed 50 strokes must be completed within 50 to 60 seconds: Provided that the screening process may also be performed in some or other container or an automatic sieving apparatus.

STAATSKOERANT, 22 JANUARIE 2016

- No. 39613 **59**
- (c) Determine the mass of the material that has passed through the sieve and express it that as a percentage of the mass of the working sample.
- (d) Such percentage represents the percentage screenings in the consignment.

Determination of percentage foreign matter

- 15. The percentage foreign matter in a consignment of sunflower seed shall be determined as follows:
 - (a) Obtain a working sample of at least 20g of a screened sample.
 - (b) Remove all foreign matter by hand and determine the mass thereof.
 - (c) Express the mass thus determined as a percentage of the mass of the working sample.
 - (d) Such a percentage represents the percentage foreign matter in the consignment.

Determination of percentage sclerotia

- 16. The percentage sclerotia in a consignment of sunflower seed is determined as follows:
 - (a) Remove all sclerotia in the working sample in 15(a) obtained by hand and determine the mass thereof.
 - (b) Express the mass thus determined as a percentage of the working sample in regulation 15(a) obtained.
 - (c) Such a percentage represents the percentage sclerotia in the consignment.

Determination of percentage sunflower seed of another class

- 17. The percentage sunflower seed of another class in a consignment of sunflower seed shall be determined as follows:
 - (a) Obtain a working sample of at least 20g from a screened sample free of foreign matter and sclerotia.
 - (b) Remove all sunflower seeds of another class from the working sample by hand and determine the mass thereof.
 - (c) Express the mass thus determined as a percentage of the working sample.
 - (d) Such a percentage represents the percentage sunflower seed of another class in the consignment.

Determination of the percentage damaged sunflower seed

- 18. The percentage damaged sunflower seed in a consignment of sunflower seed, shall be determined as follows:
 - (a) Obtain a working sample of at least 20 g from a screened sample free of foreign matter and sclerotia.

60 No. 39613

GOVERNMENT GAZETTE, 22 JANUARY 2016

- (b) Shell the seed in the working sample by hand or with a machine so that nucleus portions thereof are retained.
- (c) Remove all damaged sunflower seed from the quantity thus shelled and determine the mass thereof.
- (d) Express the mass thus determined as a percentage of the working sample.
- (e) Such a percentage represents the percentage damaged sunflower seed in the consignment.

PART V

MASS DETERMINATION

19. The mass of sunflower seed shall be determined by deducting the actual percentage sclerotia, screenings and foreign matter found during the inspection process from the total mass of the consignment: Provided that the weighing instruments used for the determination of mass shall comply with the requirements of SANS 1649:2001 published in terms of the Trade Metrology Act 77 of 1973 for the specific class of instrument.

PART VI

OFFENCE AND PENALTIES

20. Any person who contravenes or fails to comply with any provision of these regulations shall be guilty of an offence and upon conviction be liable to a fine or imprisonment in terms of section 11 of the Act.

ANNEXURE

TABLE 1

STANDARDS FOR GRADES OF SUNFLOWER SEED

DEVIATIONS		Maximum permissible deviations	
		Class FH	Class FS
		Grade1	
1.	Damaged sunflower seed	10%	
2.	Screenings	4%	
3.	Sclerotia	4%	
4.	Foreign Matter	4%	
5.	Deviation in 2,3 and 4 collectively: Provided that such deviations are individually within the limits of said items.	6%	

