

PRODUCTION REGION	(15) North-W	est South	ı-Eastern	Region	(16) North-W Region	lest Centi	ral-Easter	'n		est Centi (Ottosdal	ral-Northe	ern
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.03	0.00	0.18	0. <mark>07</mark>	0.08	0.00	0.18	0.09	0.07	0.00	0.24	0.11
2. Screenings, %	1.32	1.18	1.46	0.10	1.62	0.30	4.11	1.31	2.03	0.92	3.90	1.03
3. Sclerotia, %	0.04	0.00	0.22	0.09	0.28	0.00	0.64	0.24	1.05	0.09	2.18	0.73
4. Foreign Matter, %	1.61	0.71	4.17	1.30	1.59	0.26	5.10	1.85	1.53	0.30	6.00	1.99
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	2.97	2.17	5.35	1.20	3.49	2.04	9.53	2.96	4.61	1.86	10.02	2.80
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	0	0	0.00	0	0	0	0.00	1	0	5	1.89
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			6				6				7	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.9	4.4	5.5	0.47	4.8	4.0	6.3	0.87	5.1	3.5	6.3	0.97
Crude Protein, % (as is)	17.18	15.73	19.13	1.54	15.73	14.18	18.33	1.55	15.16	14.40	15.57	0.38
Crude Fat, % (as is)	38.6	37.7	39.2	0.71	39.4	30.2	42.6	4.68	38.2	32.4	42.5	3.00
Crude Fibre, % (as is)	21.4	20.5	23.1	0.93	21.2	18.1	25.0	2.41	22.5	19.3	23.9	1.55
Ash, % (as is)	2.91	2.68	3.12	0.19	2.74	2.56	2.91	0.14	2.72	2.56	3.03	0.16
Number of samples			6				6				7	

PRODUCTION REGION	(18) North-W (Venters		al Regior	1	(19) North-W (Lichten		ral Regio	n	(20) North-W	est Easte	ern Regio	n
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.14	0.00	0.38	0. <mark>14</mark>	0.13	0.00	0.54	0.22	0.32	0.00	1.60	0.72
2. Screenings, %	1.66	0.84	3.62	1.00	4.84	2.18	12.02	3.73	2.76	1.18	6.70	2.29
3. Sclerotia, %	0.91	0.08	1.98	0.71	0.68	0.08	2.32	0.83	0.40	0.00	0.96	0.43
4. Foreign Matter, %	1.16	0.12	3.20	1.11	2.06	0.40	5.20	1.78	1.44	0.80	1.90	0.55
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	3.73	1.90	6.24	1.67	7.58	3.82	17.44	5.60	4.60	2.84	8.60	2.32
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	4	0	17	6.83	0	0	0	0.00	6	0	16	7.80
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			6				6				5	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.4	3.1	5.0	0.67	5.0	2.9	6.2	1.16	4.9	3.6	6.1	1.02
Crude Protein, % (as is)	14.96	14.09	16.55	0.92	15.09	12.92	16.13	1.13	16.12	15.37	17.71	0.99
Crude Fat, % (as is)	40.4	39.4	41.8	0.90	39.2	36.3	47.0	4.05	38.4	37.3	40.0	1.38
Crude Fibre, % (as is)	21.7	20.4	22.5	0.88	23.4	22.3	24.4	0.98	21.2	20.8	21.7	0.35
Ash, % (as is)	2.71	2.53	2.97	0.15	2.74	2.62	2.82	0.08	2.63	2.47	2.83	0.15
Number of samples			6				6				5	

PRODUCTION REGION	(21) Free Sta (Viljoens		Western I	Region	(22) Free Sta (Bothav		-Western	Region	(23) Free Sta (Bultfon		-Western	Region
Grading:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.61	0.00	12.60	2. <mark>56</mark>	0.18	0.00	0.60	0.24	0.17	0.00	1.85	0.47
2. Screenings, %	2.58	0.36	6.16	1.51	3.10	1.04	6.70	2.10	2.69	0.70	6.23	1.58
3. Sclerotia, %	0.39	0.00	1.62	0.47	0.27	0.00	0.60	0.25	0.30	0.00	1.06	0.33
4. Foreign Matter, %	1.83	0.42	7.70	1.87	3.37	0.72	9.84	3.36	2.17	0.33	6.87	1.84
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	4.80	1.04	10.80	2.54	6.74	3.68	13.94	4.38	5.17	1.79	10.74	2.85
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	1	0	10	2.62	5	0	10	4.47	1	0	12	3.22
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	10	2.04	0	0	0	0.00	0	0	0	0.00
Number of samples		:	24				6				17	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.7	3.5	7.5	0.88	5.2	4.8	5.5	0.27	5.1	4.5	5.9	0.46
Crude Protein, % (as is)	15.85	13.05	18.10	1.24	16.02	15.61	16.43	0.34	16.83	14.61	19.55	1.31
Crude Fat, % (as is)	39.0	34.4	44.5	2.51	36.3	32.6	38.6	2.38	37.7	32.5	42.5	2.77
Crude Fibre, % (as is)	21.5	16.8	24.8	1.86	22.7	20.1	25.5	1.88	21.9	15.7	24.5	2.12
Ash, % (as is)	2.75	2.31	3.14	0.21	2.73	2.46	3.04	0.20	2.86	2.32	3.29	0.26
Number of samples		:	24				6			1	17	

PRODUCTION REGION	(24) Free Sta	te Centra	ıl Region		(25) Free Sta	ite South	-Western	Region	(26) Free Sta	ite South	-Eastern	Region
<u>Grading:</u>	ave	min	max	std <mark>ev</mark>	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.05	0.00	0.32	0.11	0.12	0.00	0.24	0.17	0.34	0.00	0.72	0.29
2. Screenings, %	3.16	0.32	15.36	4.00	1.22	1.00	1.44	0.31	2.84	0.54	6.83	2.21
3. Sclerotia, %	0.34	0.00	1.78	0.47	1.05	0.24	1.86	1.15	2.95	0.56	7.84	2.36
4. Foreign Matter, %	1.15	0.55	2.76	0.66	1.65	1.50	1.80	0.21	1.71	0.50	4.44	1.30
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	4.66	1.61	18.28	4.50	3.92	3.04	4.80	1.24	7.50	2.66	13.29	4.01
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	3	0	40	11.55	4	0	8	5.66	0	0	0	0.00
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples		1	12				2				9	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	5.0	4.0	5.8	0.72	4.8	4.6	5.0	0.28	4.6	4.1	5.0	0.33
Crude Protein, % (as is)	14.67	12.74	16.02	0.98	14.77	14.13	15.41	0.91	13.70	12.64	15.42	1.01
Crude Fat, % (as is)	37.6	36.2	41.1	1.47	37.3	36.9	37.6	0.49	38.4	36.1	40.7	1.67
Crude Fibre, % (as is)	23.4	21.7	25.2	1.11	23.8	23.7	23.9	0.14	23.2	21.7	24.7	0.84
Ash, % (as is)	2.52	2.40	2.69	0.10	2.87	2.79	2.94	0.11	2.61	2.45	2.85	0.14
Number of samples			12				2				9	

PRODUCTION REGION	(27) Free Sta	te Northe	ern Regio	n	(28) Free Sta	ite Easter	n Region		(29) Mpumal	anga Sou	ıthern Re	gion
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.52	0.00	3.10	1. <mark>27</mark>	0.03	0.00	0.18	0.06	12.77	3.66	16.60	4.69
2. Screenings, %	2.24	0.86	4.00	1.46	1.23	0.52	2.32	0.60	1.29	0.90	2.28	0.50
3. Sclerotia, %	0.08	0.00	0.34	0.14	0.76	0.00	3.50	1.19	0.04	0.00	0.24	0.10
4. Foreign Matter, %	1.92	0.50	4.12	1.43	1.09	0.30	3.14	0.88	0.70	0.18	1.36	0.39
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	4.23	1.36	8.12	2.43	3.08	1.42	6.52	2.00	2.03	1.08	3.88	0.97
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	1	0	3	1.22	0	0	0	0.00	0	0	0	0.00
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples			6				8				6	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	5.0	4.6	5.5	0.38	4.2	3.2	5.4	0.76	4.7	4.5	5.1	0.28
Crude Protein, % (as is)	15.86	13.95	18.57	1.58	15.61	14.50	17.70	0.95	14.79	14.48	15.30	0.32
Crude Fat, % (as is)	39.0	36.0	41.8	2.07	40.1	35.4	43.1	2.36	39.7	37.1	41.3	1.53
Crude Fibre, % (as is)	22.0	20.8	22.7	0.80	20.9	18.1	25.4	2.63	24.1	21.3	25.2	1.44
Ash, % (as is)	2.50	2.35	2.69	0.13	2.55	2.10	2.83	0.21	2.21	2.14	2.36	0.08
Number of samples			6				8				6	

PRODUCTION REGION	(34) Gauteng	Region			(35) Limpopo	o Region		
<u>Grading:</u>	ave	min	max	stdev	ave	min	max	stdev
1. Damaged sunflower seed, %	0.28	-	-	-	0.04	0.00	0.40	0.11
2. Screenings, %	4.79	-	-	-	2.55	0.36	6.74	1.86
3. Sclerotia, %	0.22	-	-	-	0.00	0.00	0.00	0.00
4. Foreign Matter, %	1.65	-	-	-	0.72	0.10	1.82	0.52
5. Deviations in 2, 3 and 4 collectively, %: Provided that such deviations are individually within the limits of said items	6.66	-	-	1	3.27	0.50	6.98	1.88
Poisonous seeds (Crotalaria sp., Datura sp., Ricinis communis)	0	-	-	-	0	0	0	0.00
Poisonous seeds (Argemone mexicana L., Convolvulus sp., Ipomoea purpurea Roth., Lolium temulentum, Xanthium sp.)	0	1	-	-	0	0	0	0.00
Number of samples			1			1	13	
Nutritional analysis:	ave	min	max	stdev	ave	min	max	stdev
Moisture, % (5 hr, 105 °C)	4.2	-	-	- "	4.6	3.4	5.2	0.49
Crude Protein, % (as is)	11.54	_	-		17.08	15.01	19.84	1.34
Crude Fat, % (as is)	35.6	-		-	38.4	35.1	41.5	1.98
Crude Fibre, % (as is)	25.4	8/4			20.1	17.2	22.5	1.46
Ash, % (as is)	2.71	-	1		2.52	2.08	2.72	0.17
Number of samples			1			1	3	

Fatty acid Profile

Fatty acid profiles are the most important tool for identification of authenticity of vegetable fats and oils. All types of oil have their own specific fatty acid profile which is unique to that product. Fatty acids are typically esterified to a glycerol backbone to form triglycerides (also called fats or oils). Fatty acids are either described as saturated or unsaturated, with saturated fatty acids being solid at room temperature and unsaturated fatty acids being liquid at room temperature. Unsaturated fatty acids are further subdivided into mono-unsaturated (one double bond in the carbon chain) or poly-unsaturated (more than one double bond in the carbon chain). The unique fatty acid profile of each product/crop is a combination of saturated, mono-unsaturated and poly-unsaturated oils and is specific to that type of oil.

Fatty acid profiles of every crop, however, are subject to variation. The variation or typical pattern of fatty acids in a specific oil not only influences the stability and physical properties of the oil but also aids in distinguishing one type of oil from another. Variation of fatty acids within the same product depend on climate, latitude, soil type, cultivar, rainfall as well as seasonal variation. These variations should be included when ranges for identification of authenticity are determined.

It is imperative to include ranges wherein fatty acids vary, in order to successfully validate the authenticity of a specific vegetable oil. Building of a database requires gathering of information over different seasons, areas and cultivars in order to give a true reflection of the ranges wherein fatty acids can differ. Currently, no national updated database for fatty acid composition of sunflower oil is available.

It is important that South Africa, as a sunflower seed producing country, develop and maintain a national fatty acid profile database to the benefit of the Oil Seed Industry. Annual analysis of crop and cultivar samples will ensure that the natural variation caused by different cultivars as well as the influence of climate and locality are included in the database values. Seasonal variations will also be addressed. Recording all variation applicable to the crops in the database will enable the annual review of the specified ranges.

Precision Oil Laboratories was subcontracted for the second consecutive year to perform fatty acid profile analyses on 20 composite crop samples representing different production regions as well as 20 cultivar samples from different localities. Please refer to Tables 6, 7 and 8 on pages 32 to 34 for the results.

The following fatty acid were included in the profile analysis:

C14:0	Myristic acid	C18:3n5	n5 Linolenic acid
C16:0	Palmitic acid	C18:3n3	n3 Linolenic acid
C16:1	Palmitoleic acid	C20:0	Arachidic acid
C17:0	Margaric acid	C20:1	Eicosenoic acid
C17:1	Glinkgolic acid	C20:2	Eicosadienoic acid
C18:0	Stearic acid	C21:0	Heneicosanoic acid
C18:1 c	cis Oleic acid	C22:0	Behenic acid
C18:2 c	cis Linoleic acid	C24:0	Lignoceric acid
C18:3n6	n6 Linolenic acid	C24:1	Nervonic acid

References:

Accum, F., 1820. "A Treatise on Adulteration of Food and Culinary Poisons", Longman, Hurst, Rees, Orme and Row, London

Gunstone, F.D., 1996. Fatty Acid and Lipid Chemistry, 1st edition, Blackie Academic & Professional, London, pp 1-23. Rossell, J.B., Measurement of rancidity. IN: J.C. and Hamilton R.J. (Eds), Rancidity in Foods. Blackie Academic and Professional, Glasgow, pp22-53.

Van Niekerk, P.J., 1990. Determination of the component oils of edible oil blends. University of Pretoria.

The Fatty acid Profile information was supplied by Dr. Mathilda Mostert from Precision Oil Laboratories.

Mail				Tahl	6. F2	ttv acid	nrofile		of a sele	ction of	crop a	uality sa	mples f	From the	2019/2	O seas	25			
14.0 CHANA	o di con	goise							0)	Fatty a	cids/10	0 g Fatt	y Acids							
4.0 6.6 6.6 6.0 <th>200</th> <th>lloifiau</th> <th>C14:0</th> <th>C16:0</th> <th>C16:1</th> <th>C17:0</th> <th>C17:1</th> <th>C18:0</th> <th>C18:1 c</th> <th>C18:2 c</th> <th>C18:3n6</th> <th>C18:3n5</th> <th>C18:3n3</th> <th>C20:0</th> <th>C20:1</th> <th>C20.2</th> <th>C21:0</th> <th>C22:0</th> <th>C24:0</th> <th>C24:1</th>	200	lloifiau	C14:0	C16:0	C16:1	C17:0	C17:1	C18:0	C18:1 c	C18:2 c	C18:3n6	C18:3n5	C18:3n3	C20:0	C20:1	C20.2	C21:0	C22:0	C24:0	C24:1
41 NA 619 NA NA NA 619 NA NA NA NA NA SS 212-3 RA C400 C400 C400 C400 C400 C400 C400 NA NA C400 C400 </th <th></th> <th>12</th> <th>QN</th> <th>6.46</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>6.01</th> <th>17.57</th> <th>67.7</th> <th>ND</th> <th>0.32</th> <th><loq< th=""><th>0.56</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.95</th><th><007</th><th>QN</th></loq<></th></loq<></th>		12	QN	6.46	ND	ND	ND	6.01	17.57	67.7	ND	0.32	<loq< th=""><th>0.56</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.95</th><th><007</th><th>QN</th></loq<></th></loq<>	0.56	<loq< th=""><th>ND</th><th>ND</th><th>0.95</th><th><007</th><th>QN</th></loq<>	ND	ND	0.95	<007	QN
44 NO 654 NO 684 1789 683 NO 640 NO 684 683 NO NO<		13	QN	5.19	ND	ND	ND	5.35	21.29	66.1	ND	0.30	<loq< th=""><th>0.49</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.49	<loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.83	<loq< th=""><th>ND</th></loq<>	ND
416 ND 544 ND ND 6154 ND 4154 RD 4154 ND 4154 4154 ND 4154 4154 ND		14	QN	60.9	ND	ND	ND	5.81	17.69	68.3	ND	<loq< th=""><th><loq< th=""><th>0.51</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.89</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.51</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.89</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.51	<loq< th=""><th>ND</th><th>ND</th><th>0.89</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.89	<loq< th=""><th>ND</th></loq<>	ND
4.6 ND 6.57 ND ND 6.98 199 ND 6.40 1.79 6.40 ND 6.40 ND 6.40 ND 6.40 ND 6.40 ND 6.40 6.40 ND 6.40 6.40 ND 6.40 ND 6.40 6.40 ND 6.40 6.40 ND 6.40 6.40 ND 6.40 ND 6.40 8.40 ND 6.40 ND 6.40 8.40 ND 6.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.4		15	QN	5.44	ND	ND	ND	7.73	16.54	68.2	ND	0.30	<loq< th=""><th>0.56</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.79</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.56	<loq< th=""><th>ND</th><th>ND</th><th>0.79</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.79	<loq< th=""><th>ND</th></loq<>	ND
41 ND 6547 ND 617 ND 410 ND 610 ND ND 610 ND ND <th></th> <th>16</th> <th>QN</th> <th>5.57</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>5.85</th> <th>19.61</th> <th>6.99</th> <th>ND</th> <th>0.41</th> <th><loq< th=""><th>0.47</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.77</th><th><loq< th=""><th>ΠN</th></loq<></th></loq<></th></loq<></th>		16	QN	5.57	ND	ND	ND	5.85	19.61	6.99	ND	0.41	<loq< th=""><th>0.47</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.77</th><th><loq< th=""><th>ΠN</th></loq<></th></loq<></th></loq<>	0.47	<loq< th=""><th>QN</th><th>ΩN</th><th>0.77</th><th><loq< th=""><th>ΠN</th></loq<></th></loq<>	QN	ΩN	0.77	<loq< th=""><th>ΠN</th></loq<>	ΠN
416 ND 653 ND 458 1738 683 ND 410 ND 438 1738 683 ND 410 ND 410 C400 640 610 ND 410 ND 410 ND 410 ND 410 ND 410 ND 412 412 613 410 AND 410 ND 410 </th <th>North West</th> <th>17</th> <th>QN</th> <th>5.47</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>6.01</th> <th>19.62</th> <th>67.1</th> <th>ND</th> <th>ND</th> <th><loq< th=""><th>0.53</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.78</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<></th>	North West	17	QN	5.47	ND	ND	ND	6.01	19.62	67.1	ND	ND	<loq< th=""><th>0.53</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.78</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<>	0.53	<loq< th=""><th>QN</th><th>ΩN</th><th>0.78</th><th><loq< th=""><th>QN</th></loq<></th></loq<>	QN	ΩN	0.78	<loq< th=""><th>QN</th></loq<>	QN
4.0 N.D N.D 7.56 15.0 0.0 </th <th></th> <th>18</th> <th>QN</th> <th>6.29</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>4.96</th> <th>17.98</th> <th>68.9</th> <th>ND</th> <th><loq< th=""><th><loq< th=""><th>0.48</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<></th></loq<></th>		18	QN	6.29	ND	ND	ND	4.96	17.98	68.9	ND	<loq< th=""><th><loq< th=""><th>0.48</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.48</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.48	<loq< th=""><th>ND</th><th>ND</th><th>0.83</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.83	<loq< th=""><th>ND</th></loq<>	ND
M/M 6.46 4.46 6.64 6.64 0.47 0.47 0.47 0.47 0.47 0.41 0.41 0.41 0.41 0.41 0.42		19	QN	6.18	ND	ND	ND	7.58	15.60	68.8	ND	ND	<loq< th=""><th>0.59</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.88</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<>	0.59	<loq< th=""><th>QN</th><th>ΩN</th><th>0.88</th><th><loq< th=""><th>QN</th></loq<></th></loq<>	QN	ΩN	0.88	<loq< th=""><th>QN</th></loq<>	QN
NAT 6 46 6 46 6 4 9 6 4 9 6 4 9 6 4 9 6 4 9 6 4 9 6 4 9 6 8 9 8 9		Min	,	5.19	٠		٠	4.96	15.60	66.1	٠	0:30		0.47		٠	٠	0.77		
M 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Мах	,	6.46			٠	7.73	21.29	68.9		0.41		0.59				0.95	٠	
20 ND 620 ND 616 6164 6184 <th></th> <th>~</th> <th>8</th>		~	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
21 ND 620 ND ND 666 16.58 70.0 ND 0.34 < 4.00		20	QV	6.20	QN	QN	ND	6.16	16.43	69.2	ND	QN	<loq< th=""><th>0.54</th><th>×L0Q</th><th>QN</th><th>QN</th><th>96.0</th><th><l0q< th=""><th>QN</th></l0q<></th></loq<>	0.54	×L0Q	QN	QN	96.0	<l0q< th=""><th>QN</th></l0q<>	QN
21 ND 699 ND 678 22.52 63.6 ND 61.00 ND ND ND 63.9 C1.00 C1.00 C1.00 C1.00 C1.00 ND ND C1.00 C1.00 ND ND C1.00 ND C1.00 ND C1.00 ND ND C1.00 ND ND C1.00 ND C1.00 ND C1.00 ND ND C1.00 ND ND C1.00 ND ND C1.00 ND C1.00 ND C1.00 ND C1.00 ND ND <th></th> <th>21</th> <th>QN</th> <th>6.20</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>5.05</th> <th>16.58</th> <th>70.0</th> <th>ND</th> <th>0.34</th> <th><loq< th=""><th>0.48</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.89</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<></th>		21	QN	6.20	ND	ND	ND	5.05	16.58	70.0	ND	0.34	<loq< th=""><th>0.48</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>0.89</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<>	0.48	<loq< th=""><th>QN</th><th>ΩN</th><th>0.89</th><th><loq< th=""><th>QN</th></loq<></th></loq<>	QN	ΩN	0.89	<loq< th=""><th>QN</th></loq<>	QN
22 ND 6.04 ND A 97 18.53 67.5 ND CLOQ CLOQ CLOQ CLOQ ND ND CLOQ ND ND CLOQ ND </th <th></th> <th>21</th> <td>QN</td> <td>5.93</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>5.78</td> <td>22.52</td> <td>63.6</td> <td>ND</td> <td>0.35</td> <td><loq< td=""><td>0.51</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.89</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<></td>		21	QN	5.93	ND	ND	ND	5.78	22.52	63.6	ND	0.35	<loq< td=""><td>0.51</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.89</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<>	0.51	<loq< td=""><td>ND</td><td>ND</td><td>0.89</td><td><loq< td=""><td>ND</td></loq<></td></loq<>	ND	ND	0.89	<loq< td=""><td>ND</td></loq<>	ND
23 ND 6.89 ND 6.84 17.47 6.82 ND 6.03 6.14 0.33 6.10 0.53 6.00 0.53 6.00 0.54 0.00 0.54 0.00 0.54 0.00 0.54 0.00 0.54 0.00 0.54 0.00 0.50 0.00 </th <th></th> <th>22</th> <td>QN</td> <td>6.04</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>4.97</td> <td>19.53</td> <td>67.5</td> <td>ND</td> <td><loq< td=""><td><loq< td=""><td>0.48</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.92</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<></td></loq<></td>		22	QN	6.04	ND	ND	ND	4.97	19.53	67.5	ND	<loq< td=""><td><loq< td=""><td>0.48</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.92</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.48</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.92</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<>	0.48	<loq< td=""><td>ND</td><td>ND</td><td>0.92</td><td><loq< td=""><td>ND</td></loq<></td></loq<>	ND	ND	0.92	<loq< td=""><td>ND</td></loq<>	ND
24 ND 557 ND ND 698 698 ND 698 ND 699 ND 6100 6140 6140 6140 6140 6140 6140 6140 6140 6190 ND 6140 ND 6190 ND 6140 ND 6140 ND 6140 ND 6140 6140 6140 ND 6140 ND 6140 CLOS CLOS 6140 6140 ND 6140 ND 6140 ND 6140 ND 6140 6140 ND 6140 CLOS 6140 6140 ND 6140		23	QN	5.38	ND	ND	ND	6.84	17.47	68.2	ND	0.33	<loq< td=""><td>0.53</td><td><loq< td=""><td>QN</td><td>ΩN</td><td>0.85</td><td><loq< td=""><td>QN</td></loq<></td></loq<></td></loq<>	0.53	<loq< td=""><td>QN</td><td>ΩN</td><td>0.85</td><td><loq< td=""><td>QN</td></loq<></td></loq<>	QN	ΩN	0.85	<loq< td=""><td>QN</td></loq<>	QN
25 ND 6.89 NB 6.89 6.90 ND CLOQ CLOQ CLOQ CLOQ CLOQ CLOQ CLOQ NB	0 000	24	QN	5.57	ND	ND	ND	5.76	16.83	8.69	ND	ND	<loq< th=""><th>0.54</th><th><loq< th=""><th>QN</th><th>ΩN</th><th>1.00</th><th><loq< th=""><th>QN</th></loq<></th></loq<></th></loq<>	0.54	<loq< th=""><th>QN</th><th>ΩN</th><th>1.00</th><th><loq< th=""><th>QN</th></loq<></th></loq<>	QN	ΩN	1.00	<loq< th=""><th>QN</th></loq<>	QN
28 ND 6.66 ND CLOQ CLOQ CLOQ CLOQ ND ND 0.88 CLOQ CLOQ CLOQ ND ND CLOQ CLOQ CLOQ ND ND CLOQ ND	Liee State	26	QN	5.87	ND	ND	ND	6.68	16.39	0.69	ND	ND	<loq< th=""><th>0.54</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.99</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.54	<loq< th=""><th>ND</th><th>ND</th><th>0.99</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.99	<loq< th=""><th>ND</th></loq<>	ND
Min 5.26 ND ND 6.34 6.84 ND 0.37 CLOQ 0.52 CLOQ ND NB 0.34 CLOQ 0.37 CLOQ CLOQ NB		27	QN	90.9	ND	QN	ND	5.61	19.53	9.99	ND	<loq< th=""><th><loq< th=""><th>0.56</th><th><loq< th=""><th>QN</th><th>ND</th><th>0.88</th><th><l0q< th=""><th>QN</th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.56</th><th><loq< th=""><th>QN</th><th>ND</th><th>0.88</th><th><l0q< th=""><th>QN</th></l0q<></th></loq<></th></loq<>	0.56	<loq< th=""><th>QN</th><th>ND</th><th>0.88</th><th><l0q< th=""><th>QN</th></l0q<></th></loq<>	QN	ND	0.88	<l0q< th=""><th>QN</th></l0q<>	QN
Min - 5.26 - - 4.97 16.39 6.36 - 0.48 - 0.48 - 0.48 - 0.48 - 0.48 - 0.37 - 0.48 - 0.89 6.84 22.52 70.0 - 0.37 - 0.48 - 1.00 <th></th> <th>28</th> <td>ND</td> <td>5.26</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>6.30</td> <td>16.41</td> <td>8.69</td> <td>ND</td> <td>0.37</td> <td><loq< td=""><td>0.52</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.81</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<></td>		28	ND	5.26	ND	ND	ND	6.30	16.41	8.69	ND	0.37	<loq< td=""><td>0.52</td><td><loq< td=""><td>ND</td><td>ND</td><td>0.81</td><td><loq< td=""><td>ND</td></loq<></td></loq<></td></loq<>	0.52	<loq< td=""><td>ND</td><td>ND</td><td>0.81</td><td><loq< td=""><td>ND</td></loq<></td></loq<>	ND	ND	0.81	<loq< td=""><td>ND</td></loq<>	ND
Max - 6.20 - - 6.84 2.5.25 70.0 - 0.37 - 0.56 - 1.00 - 1.00 - - - - 1.00 - <		Min	٠	5.26		٠		4.97	16.39	63.6	٠	0.33		0.48			•	0.81		
4 4 9		Мах	٠	6.20				6.84	22.52	70.0		0.37		0.56				1.00		
34 ND 6.33 ND ND 6.72 18.44 67.8 ND 0.30 <loq< th=""> 0.50 <loq< th=""> O.50 <loq< th=""> ND O.50 <loq< th=""> O.50 <loq< th=""> ND O.50 <loq< th=""> ND ND O.50 <loq< th=""> ND ND ND V. V.<th></th><th>N</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>6</th><th>9</th><th>6</th></loq<></loq<></loq<></loq<></loq<></loq<></loq<>		N	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	9	6
34 ND 6.27 ND ND ND ND 4.25 16.99 69.7 ND CLOQ 0.48 CLOQ ND ND ND 0.86 CLOQ ND ND ND 0.86 CLOQ ND	Mpumalanga	29	ND	6.33	ND	ND	ND	5.22	18.44	87.8	ND	0.30	<loq< th=""><th>0.50</th><th><loq< th=""><th>ND</th><th>ND</th><th>0.89</th><th><loq< th=""><th>ND</th></loq<></th></loq<></th></loq<>	0.50	<loq< th=""><th>ND</th><th>ND</th><th>0.89</th><th><loq< th=""><th>ND</th></loq<></th></loq<>	ND	ND	0.89	<loq< th=""><th>ND</th></loq<>	ND
35 ND 6.27 ND ND ND 7.24 15.87 68.5 ND <a block"="" href="https://documents.com/liber/li</th><th>Gauteng</th><th>34</th><th>ND</th><th>7.16</th><th>ND</th><th>ND</th><th>ND</th><th>4.25</th><th>16.99</th><th>69.7</th><th>ND</th><th>ND</th><th><LOQ</th><th>0.48</th><th><LOQ</th><th>ND</th><th>ND</th><th>0.86</th><th><L0Q</th><th>QN</th></tr><tr><th>Min - 5.19 - - - 4.25 15.60 63.60 - 0.30 - 0.47 - 0.47 - 0.47 - 0.47 - 0.47 - 0.40 - 0.41</th><th>Limpopo</th><th>35</th><th>QN</th><th>6.27</th><th>ON</th><th>QN</th><th>ND</th><th>7.24</th><th>15.87</th><th>68.5</th><th>ND</th><th><LOQ</th><th><LOQ</th><th>0.57</th><th><LOQ</th><th>QN</th><th>ND</th><th>0.89</th><th><LOQ</th><th>QN</th></tr><tr><th><math display="> \begin{array}{cccccccccccccccccccccccccccccccccccc		Min	٠	5.19				4.25	15.60	63.60		0:30	٠	0.47	٠			0.77		
20 20<	RSA	Мах	٠	7.16			٠	7.73	22.52	26.69		0.41	٠	0.59	٠		٠	1.00	٠	
		N	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20

Note:
Limit of detection (LOD) = 0.09 g Fatty acid/100 g Fatty acids.
Limit of quantitation (LOQ) = 0.28 g Fatty acid/100 g Fatty acids.
Values below the limit of quantitation cannot be accurately quantified.
ND = Not detected

Note:			Table 7: F	Fatty acid profile res	cid pic		2000				uits of a selection of cultival samples from the 2019/20 season				2					
Province	Locality	Region	Cultivar							g Fa	g Fatty acids/100 g Fatty Acids	ls/100 g	g Fatty	Acids						
				C14:0	C16:0	C16:1	C17:0	C17:1 (C18:0 C	C18:1 c C1	C18:2 c C18	C18:3n6 C1	C18:3n5 C1	C18:3n3 C	C20:0	C20:1 C20.2	0.2 C21:0) C22:0	C24:0	C24:1
			AGSUN 5106 CLP	ND	5.38	QN	QN	ND	4.44	28.36	59.8 N	ND dN	<loq< th=""><th>ND</th><th>0.41</th><th><loq nd<="" th=""><th>D ND</th><th>0.81</th><th><loq< th=""><th>ND</th></loq<></th></loq></th></loq<>	ND	0.41	<loq nd<="" th=""><th>D ND</th><th>0.81</th><th><loq< th=""><th>ND</th></loq<></th></loq>	D ND	0.81	<loq< th=""><th>ND</th></loq<>	ND
			AGSUN 8251	ND	4.80	ND	ND	ND	5.25	33.5	54.6 r	ND	ND	ND ON	0.45	<loq nd<="" th=""><th>DN O</th><th>06:0</th><th><loq< th=""><th>ND</th></loq<></th></loq>	DN O	06:0	<loq< th=""><th>ND</th></loq<>	ND
		18	P 65 LL14	QN	5.96	ND	QN	ND	3.94	22.15	66.0 r	ND ON	0.26	ND	0.42	<loq nd<="" th=""><th>D ND</th><th>0.78</th><th><loq< th=""><th>ND</th></loq<></th></loq>	D ND	0.78	<loq< th=""><th>ND</th></loq<>	ND
	Dotchofotion 1		PAN 7170	ND	5.71	ND	ND	ND	3.57	23.50	65.5	ND dN	<loq< th=""><th>ND ON</th><th>0.38</th><th><loq nd<="" th=""><th>DN D</th><th>0.78</th><th><loq< th=""><th>ND</th></loq<></th></loq></th></loq<>	ND ON	0.38	<loq nd<="" th=""><th>DN D</th><th>0.78</th><th><loq< th=""><th>ND</th></loq<></th></loq>	DN D	0.78	<loq< th=""><th>ND</th></loq<>	ND
			SY 3975 СLОН	0.00	3.13	ND	ND	ND	3.61	86.4	4.43	ND	ND ON	<00 <	0.36	<loq nd<="" th=""><th>DN D</th><th>1.32</th><th>0.38</th><th>ND</th></loq>	DN D	1.32	0.38	ND
			Min		3.13			•	3.57	22.15	4.43			•	0.36	·		0.78	٠	
			Мах		5.96				5.25	86.4 (0.99		0.26		0.45		•	1.32	0.38	
			N	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5	5	5	5
			AGSUN 5106 CLP	QN	5.16	QN	QN	ND	6.05	21.16	65.7	ND ⊲N	<l0q< th=""><th>ND</th><th>0.49</th><th><loq nd<="" th=""><th>QN d</th><th>0.93</th><th>>LOQ</th><th>ND</th></loq></th></l0q<>	ND	0.49	<loq nd<="" th=""><th>QN d</th><th>0.93</th><th>>LOQ</th><th>ND</th></loq>	QN d	0.93	>LOQ	ND
			AGSUN 8251	9	5.25	ΩN	Q	QN	6.37	22.36	64.0	ND	<l0q< th=""><th>QN</th><th>0.53</th><th><loq nd<="" th=""><th>QN Q</th><th>0.88</th><th><loq< th=""><th>ND</th></loq<></th></loq></th></l0q<>	QN	0.53	<loq nd<="" th=""><th>QN Q</th><th>0.88</th><th><loq< th=""><th>ND</th></loq<></th></loq>	QN Q	0.88	<loq< th=""><th>ND</th></loq<>	ND
		18	P 65 LL14	Q	5.66	QN	Q	QN	5.08	18.08	69.1	ND	<007>	<loq< td=""><td>0.49</td><td><loq nd<="" td=""><td>QN Q</td><td>0.85</td><td><loq< td=""><td>ND</td></loq<></td></loq></td></loq<>	0.49	<loq nd<="" td=""><td>QN Q</td><td>0.85</td><td><loq< td=""><td>ND</td></loq<></td></loq>	QN Q	0.85	<loq< td=""><td>ND</td></loq<>	ND
	3		PAN 7170	9	5.11	ΩN	9	QN	4.71	20.67	67.5	ON	0.20	<007>	0.45 <	<loq nd<="" th=""><th>QN Q</th><th>0.88</th><th><l0q< th=""><th>ΩN</th></l0q<></th></loq>	QN Q	0.88	<l0q< th=""><th>ΩN</th></l0q<>	ΩN
	Potcheistroom 3		SY 3975 СLОН	9	3.03	ΩN	Q	QN	5.02	82.4 (6.75	ND	Q.	<007	0.47	<loq nd<="" th=""><th>QN Q</th><th>1.60</th><th>0.39</th><th>ND</th></loq>	QN Q	1.60	0.39	ND
North West			Min	•	3.03	•		٠	4.71	18.08	6.75	•	-	•	0.45			0.85		
			Мах		5.66				6.37	82.4	69.1		0.20	•	0.53			1.60	0.39	
			N	2	2	2	2	2	2	2	2	2	2	2	2	5 5	9	2	2	5
			AGSUN 5106 CLP	ND	6:39	ND	QN	ND	8.12	14.39 6	68.6	ND	V QN	<00 <	0.77	<loq nd<="" td=""><td>DN D</td><td>1.02</td><td><loq< td=""><td>ND</td></loq<></td></loq>	DN D	1.02	<loq< td=""><td>ND</td></loq<>	ND
			AGSUN 8251	ON	6.38	QN	QN	ND	8.42	11.81	71.1	ON ON	0:03	-L00	0.78	<loq nd<="" td=""><td>QN d</td><td>0.92</td><td>>Loα</td><td>ND</td></loq>	QN d	0.92	>Loα	ND
		18	P 65 LL14	Q	6.26	ND	Q	ND	8.42	14.13	68.9	ND	V	<_L0Q	0.77	QN QN	QN Q	1.13	0.29	ND
	Potchefetroom 5		PAN 7170	9	6.33	QN	Ð	Q	7.74	_	68.9	Q.	V QN	<001>	0.70	LOQ ND	QN Q	1.08	<007	Q
			SY 3975 CLOH	Ð	4.02	ND	ND	ND	7.57	71.2	13.98	ON ON	00:0	<000 -	0.70	<loq nd<="" td=""><td>ON O</td><td>1.81</td><td>0.38</td><td>QN</td></loq>	ON O	1.81	0.38	QN
			Min		4.02				7.57	11.81	13.98			•	0.70		•	0.92	0.29	
			Мах		6.39			٠	8.42	71.2	71.1	. (0.03	•	0.78	•	•	1.81	0.38	
			N	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5	2	5	5
		Min		٠	3.03		٠		3.57	11.81	4.43		0.03	,	0.36			0.78	0.29	
100		Max			6.39				8.42	86.4	71.1	. (0.26		0.78	•	•	1.81	0.39	
		N		15	15	15	15	15	15	15	15	15	15	15	15	15 1.	15 15	15	15	15
			AGSUN 5106 CLP	Q	5.81	QN	Q	QN	9.15	11.68	71.0	ON O	V QN	<l0q< th=""><th>0.76 <</th><th><loq nd<="" th=""><th>QN Q</th><th>1.05</th><th><l0q< th=""><th>Q.</th></l0q<></th></loq></th></l0q<>	0.76 <	<loq nd<="" th=""><th>QN Q</th><th>1.05</th><th><l0q< th=""><th>Q.</th></l0q<></th></loq>	QN Q	1.05	<l0q< th=""><th>Q.</th></l0q<>	Q.
			AGSUN 8251	Q	6.17	QN	Q	QN	_	9.53	\dashv	- QN	V Qu	\dashv	\dashv	<loq nd<="" th=""><th>QN Q</th><th>0.91</th><th><l0q< th=""><th>Q</th></l0q<></th></loq>	QN Q	0.91	<l0q< th=""><th>Q</th></l0q<>	Q
		25	P 65 LL14	9	5.79	Ω	9	Q	8.00	11.8	72.2	ON O	Q Q	\dashv	0.68	<loq nd<="" th=""><th>QN Q</th><th>0.98</th><th><l0q< th=""><th>Ω</th></l0q<></th></loq>	QN Q	0.98	<l0q< th=""><th>Ω</th></l0q<>	Ω
Fron State	Kroonstad		PAN 7170	Q	6.01	ΩN	Q	QN	6.52	12.68 7	72.7	ND	N Q	<00	0.58	<loq nd<="" th=""><th>ON O</th><th>0.94</th><th><l0q< th=""><th>ND</th></l0q<></th></loq>	ON O	0.94	<l0q< th=""><th>ND</th></l0q<>	ND
المو واعام	Nooisia		SY 3975 CLOH	Q	3.29	ND	QN	ND	66.9	76.3	10.42	ND	ND QN	<000 <	0.63	<loq nd<="" th=""><th>D ND</th><th>1.69</th><th>0.35</th><th>ND</th></loq>	D ND	1.69	0.35	ND
			Min		3.29		•		6.52	9.53 1	10.42				0.58		•	0.91	٠	
			Мах		6.17		•		9.15	76.3	73.5				0.76		•	1.69	0.35	
			N	5	5	5	5	5	5	2	5	5	5	5	5	5 5	5 5	5	5	5
		Min			3.03		•		3.57	9.53	4.43	•	0.03		0.36		•	0.78	0.29	
RSA		Мах			6:39				9.15	86.4	73.5		0.26		0.78	•		1.81	0.39	•
		N		20	20	20	20	20	20	20	20	20	20	20	20	20 20	0 20	20	20	20

Note:
Limit of detection (LOD) = 0.09 g Fatty acid/100 g Fatty acids.
Limit of quantitation (LOQ) = 0.28 g Fatty acid/100 g Fatty acids.
Values below the limit of quantitation cannot be accurately quantified.
ND = Not detected

lable of tary act
Region
C14:0 C16:0 C16:1 C17:0 C17:1 C18:0
ND ND ND ND ND
18 ND
0 N N N N N N N N N N N N N N N N N N N
. 5.16
. 6.39
4 4 4
UN UN UN UN UN UN
18 ND 5.25 ND ND ND
ON O
24 ND 6.17 ND ND ND
. 6.38
4 4 4 4 4
DN D
18 ND S.66 ND ND ND
ND 6.26 ND ND ND
24 ND 5.79 ND ND ND
. 5.66
. 6.26
4 4 4 4 4
ND ND ND ND ND
5.11 ND ND
6.33 ND
24 ND 6.01 ND ND ND
. 5.11
. 6.33 .
4 4 4 4
0.00 3.13 ND ND ND
18 ND 3.03 ND ND ND
ND ND ND ND ND
24 ND 3.29 ND ND ND
3.03
. 4.02
4 4 4 4
. 3.03 .
. 6.39
20 20 20 20 20

Note:
Limit of detection (LOD) = 0.09 g Fatty acid/100 g Fatty acids.
Limit of quantitation (LOQ) = 0.28 g Fatty acid/100 g Fatty acids.
Values below the limit of quantitation cannot be accurately quantified.
ND = Not detected

SAMPLING PROCEDURE:

A working group determined the procedure to be followed to ensure that the crop quality samples sent to the SAGL by the various grain silo owners, were representative of the total crop.

Each delivery was sampled as per the grading regulations for grading purposes.

After grading, the grading samples were placed in separate containers acco<mark>rding to class and grade, per silo bin at each silo.</mark>

After 80% of the expected harvest had been received, the content of each container was divided with a multislot divider in order to obtain a 3 kg sample.

If there were more than one container per class and grade per silo bin, the combined contents of the containers were mixed thoroughly before dividing it with a multi slot divider to obtain the required 3 kg sample.

The samples were marked clearly with the name of the depot, the bin/bag/bunker number(s) represented by each individual sample as well as the class and grade and were then forwarded to the SAGL.

GRADING:

Full grading was done in accordance with the Regulations relating to the Grading, Packing and Marking of Sunflower Seed intended for sale in the Republic of South Africa (Government Notice NO. 45 of 22 January 2016).

See pages 67 to 74 of this report.

TEST WEIGHT:

Test weight provides a measure of the bulk density of grain and oilseeds.

Test weight does not form part of the grading regulations for sunflower seed in South Africa. An approximation of the test weight of South African sunflower seed is provided in this report for information purposes. The standard working procedure of the Kern 222 instrument, as described in ISO 7971-3:2019, was followed. The g/1 L filling mass of the sunflower seed samples was determined and divided by two. The test weight was then extrapolated by means of the following formulas obtained from the Test Weight Conversion Chart for Sunflower Seed, Oil of the Canadian Grain Commission: y = 0.1936x + 2.2775 (138 to 182 g/0.5 L) and y = 0.1943x + 2.1665 (183 to 227 g/0.5 L).

NUTRITIONAL ANALYSIS:

Milling

Prior to the chemical analyses, the sunflower seed samples were milled on a Retch ZM 200 mill fitted with a 1.0 mm screen.

Moisture

The moisture content of the samples was determined as a loss in weight when dried in an oven at 105 °C for 5 hours according to AgriLASA method 2.1, latest edition.

Crude Protein

The Dumas combustion analysis technique was used to determine the crude protein content, according to AACCI method 46-30.01, latest edition.

This method prescribes a generic combustion method for the determination of crude protein. Combustion at high temperature in pure oxygen sets nitrogen free, which is measured by thermal conductivity detection. The

total nitrogen content of the sample is determined and converted to equivalent protein by multiplication with a factor of 6.25 to obtain the crude protein content.

Crude Fat

In-House method 024 was used for the determination of the crude fat in the samples. After sample preparation the fat is extracted by petroleum ether with the aid of the Soxhlet extraction apparatus, followed by the removal of the solvent by evaporation and weighing the dried residue thus obtained. The residue is expressed as % crude fat.

Crude Fibre

In-House method 020 was used for the determination of the crude fibre in the samples. Crude fibre is the loss on ignition of the dried residue remaining after digestion of the sample with 1.25% Sulphuric acid (H₂SO₄) and 1.25% Sodium hydroxide (NaOH) solutions under specific conditions.

Ash

Ash is defined as the quantity of mineral matter which remains as incombustible residue of the tested substance, after application of the described working method. In-house method No. 011, based on AACCI method 08-03.01, was used for the determination. The samples were incinerated at 600 ± 15 °C in a muffle furnace for 2 hours.

PRECISION OIL LABORATORIES' FATTY ACID PROFILE METHODS:

Fat Extraction

In-House method POL 019 was used for the extraction of the crude fat from the samples. After sample preparation the fat is extracted by petroleum ether under reflux, followed by the removal of the solvent by evaporation. The residue obtained from the fat extraction is used for preparation of methyl esters for determination of the fatty acid profile

Fatty Acid Profile

In-House method POL 015 was used for determination of the fatty acid composition. Extracted fat is converted to methyl esters using an alkali catalyzed method. Methyl esters are injected into a Gas Chromatograph and an external fatty acid methyl ester standard is used to identify peaks based on retention times. The fatty acid composition is expressed as a total fatty acid content of 100% with different fatty acids representing a percentage of the total fatty acids.