Quality Report 2017/2018 Season

Compiled and issued by: The Southern African Grain Laboratory NPC

Grain Building - Agri-Hub Office 477 Witherite Road The Willows Pretoria SOUTH AFRICA

> PostNet Suite # 391 Private Bag X 1 **The Willows** 0041

Tel: +27 (12) 807 4019 Fax: +27(12) 807 4160 E-mail: info@sagl.co.za Website: www.sagl.co.za

Index

Summary & Introduction	Page 1
Production	2
Wheat production in the RSA from the 2007/2008 to 2017/2018 seasons (Graph 1)	2
Wheat production figures per production area over seasons (Graph 2)	3
Area planted per production area over seasons (Graph 3)	3
Average yield per production area over seasons (Graph 4)	4
Wheat production overview over two seasons (Table 1)	4
Supply and Demand	5
Wheat import figures as a % of the total demand over six seasons (Graph 5)	5
Wheat supply and demand overview 2017/2018 season (Graph 6)	5
SAGIS Wheat supply and demand figures	6
Wheat supply and demand graphs over seasons (Graphs 7 – 10)	7
SAGIS Wheat Product Information (Graphs 11 – 16)	8
SAGIS Wheat Products manufactured, imported and exported per marketing year	9
SAGIS Pan Baked Products manufactured per marketing year	10
Assuring the quality of South African wheat	11 - 12
Wheat grades	12
Percentage of samples per class and grade 2016/2017 and 2017/2018 seasons (Graphs 17 - 18)	12
Bread Wheat Grading Table (Table 2)	13
Figures of seed sold for the 2017 planting season	14
Most popular cultivars according to cultivar identification	14
Crop quality of the 2017/2018 season	15 - 17
Protein content distribution over the last three seasons (Graph 19)	15
Protein content distribution between the three production areas (Graph 20)	15
Weighted average protein, falling number, hectolitre mass and mixogram peak times per region compared over the last three seasons (Table 3)	18
Protein, falling number, hectolitre mass and mixogram peak time over ten seasons (Graph 21)	19
Comparison of Flour Quality over the last four seasons (Table 4)	20

Comparison of Rheological Quality over seasons (Graph 22)	21 - 22
Regional quality summary	23 - 25
Regional quality weighted averages (Table 5)	26 - 27
RSA Production Regions	28
RSA Provinces map (Figure 1)	28
RSA Crop Production Regions map (Figure 2)	29
List of grain production regions with silo/intake stands and type of storage structure	30 - 33
Quality data plus rheological graphs per production region	34 - 61
Mycotoxins - national and international regulatory levels	62 - 63
Mycotoxin results for the 2017/2018 season (Table 6)	64 - 65
Amino Acid Profile	66 - 67
Amino acid content of wheat samples originating from different production regions (Table 7)	68 - 69
RSA wheat quality summary comparison of the 2015/2016 and 2017/2018 seasons	70 - 71
RSA wheat quality summary comparison of the 2016/2017 and 2017/2018 seasons	72 - 73
Methods	74 - 77
SAGIS Wheat Exports and Imports per country 2016/2017 Season	78 - 79
SAGIS Wheat Exports and Imports per country 2017/2018 Season	80
Quantity of wheat imported to the RSA (Graph 23)	81
Wheat imports per origin for domestic use over two seasons (Graphs 24 – 25)	81
Total wheat imports per country over 10 seasons for use in the RSA (Table 8)	82
Quality summary of imported wheat 2016/2017 season	82 - 83
Summary of imported wheat quality results of the 2016/2017 season (Table 9)	84 - 85
Imported wheat quality per country compared to RSA crop quality during the 2016/2017 production season	86 - 107
SANAS Certificate and Schedule of Accreditation	108 - 111
International and national proficiency testing certificates	112 - 113
South African Weather Service – Seasonal Climate Watch August to December 2018	114 - 131
South African Weather Service – Average Rainfall graphs for the Western Cape, Free State and North West provinces	132 - 133
Grading Regulations for Bread Wheat, Notice No. R. 64 of 29 January 2016	134 - 146
Amendment regarding Grading Regulations for Bread Wheat, Notice No. 1218 of 07 October 2016	147

South African commercial wheat quality for the 2017/2018 SEASON

Acknowledgements

With gratitude to:

- The Winter Cereal Trust for its financial support in conducting this survey.
- Agbiz Grain and its members for their cooperation in providing the samples to make this survey possible.
- The Crop Estimates Committee (CEC) of the Department of Agriculture, Forestry and Fisheries (DAFF) for providing production related figures.
- South African Grain Information Service (SAGIS) for providing supply and demand figures relating to wheat and wheat products.
- South African Weather Service for providing seasonal climate watch and rainfall information.

Summary

The commercial wheat crop of the 2017/2018 season was set at 1.535 million tons which is 375 000 tons (19.6%) lower than the previous season's crop. A total area of 491 600 hectares was utilized for wheat production and the average yield was 3.12 tons per hectare (Figures obtained from the CEC).

The whole wheat protein average of 12.6% increased by 0.6% compared to the previous season, the ten- year national average is 11.9%. The percentage of samples having protein contents higher than 12.0% increased from 47.8% last season to 63.5%. During the 2015/2016 season this percentage was 68.2%. The average hectoliter mass was 80.7 kg/hl, slightly lower than the 81.5 kg/hl of the 2016/2017 season. The hectoliter mass of 10% of the samples was below the minimum Grade 1 requirement of 77 kg/hl, compared to the 4% of the previous season.

The average falling number this season was 371 seconds. Five of the samples analysed gave falling number values below 250 seconds and of these four were below 220 seconds. The average mixogram peak time of 2.7 minutes was equal to the previous two seasons and slightly lower than the ten-year average of 2.9 minutes.

Introduction

This report provides the results of the twentieth annual wheat crop quality survey performed by the Southern African Grain Laboratory NPC (SAGL). SAGL was established in 1997 on request of the Grain Industry. SAGL is an ISO 17025 accredited testing laboratory and participates in a number of proficiency testing schemes, both nationally and internationally as part of our ongoing quality assurance procedures to demonstrate technical competency and international comparability.

During the harvesting season (October to December for the southern production regions and November to January for the Northern production regions), a representative sample of each delivery of wheat was taken according to the prescribed wheat regulation.

A sub-sample of each of these grading samples was collected in a bin according to grade and class per silo bin at each silo. This composite bin sample was then divided and a 3 kg sample was sent to SAGL for the annual wheat crop quality survey. SAGL received and analysed 304 samples to provide as best possible a proportional representation of the production of wheat in all the different production regions.

Cultivar identification was performed on these samples and sales figures of seed sold by the commercial grain silo owners were requested. The samples were graded and the thousand kernel mass determined. Sub-samples were milled on a Quadromat Junior mill for mixograph analyses.

Composite samples were made up per class and grade for each production region and milled on a Bühler MLU 202 laboratory mill. Moisture, protein, ash and colour determinations were done and RVA analyses conducted. Rheological tests, namely gluten, mixogram, farinogram, alveogram, extensogram and 100-gram baking tests, were then performed. Multi-mycotoxin analyses were performed on 40 samples randomly selected to represent the different production regions. Amino acid analyses were also performed on a selection of samples.

The results (as averages per region) are made available weekly on the SAGL website (www.sagl.co.za) soon after the first samples are received. The hard copy reports are distributed to all Directly Affected Groups and interested parties and are also available for download in a PDF format from the website.

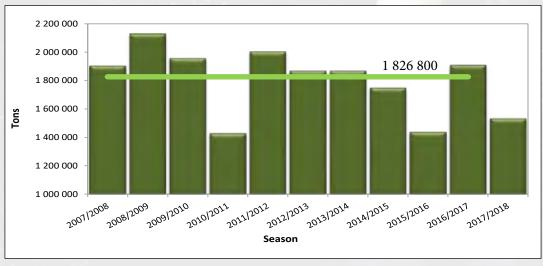
In addition to the quality information compared over a number of seasons, production figures (obtained from the CEC) relating to hectares planted, tons produced and yields obtained on a national as well as provincial basis, over a ten season period, are provided in this report.

SAGIS supply and demand information over several seasons is presented in table and graph format. Information with regards to the manufacture, import and export of wheat products as well as the manufacture of pan baked products is also incorporated into the report.

Data on wheat imported for domestic use during the 2016/2017 (previous) season is included and compared to the quality of the local crop over the corresponding period.

Seasonal climate watch data as well as rainfall figures for the Western Cape, Free State and North West provinces from the South African Weather Service, are also provided.

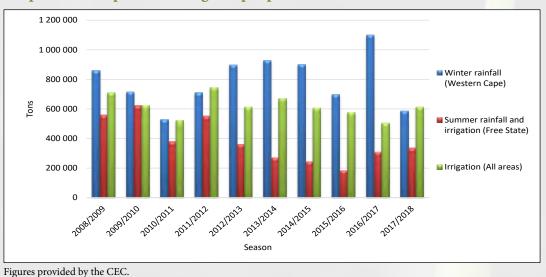
The national bread wheat grading regulations as published in the Government Gazette of 29 January 2016 are provided as the last section of the report.


The goal of this crop quality survey is to accumulate quality data on the commercial wheat crop on a national level. This valuable data reveals general tendencies and highlights quality differences in the commercial wheat produced in different local production regions. A detailed database containing reliable analytical data collected over several seasons is essential to enable industry to comment on proposed legislative levels and to supply reliable data for targeted research projects.

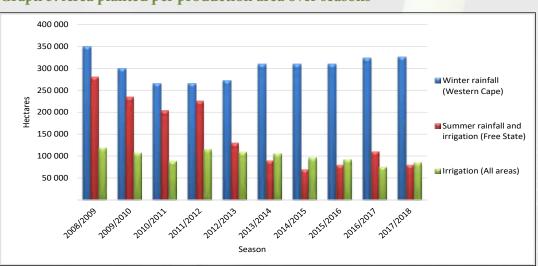
Production

Wheat contributed 79% to the total winter cereal crop production in South Africa this season. Other winter crops produced are malting barley and canola.

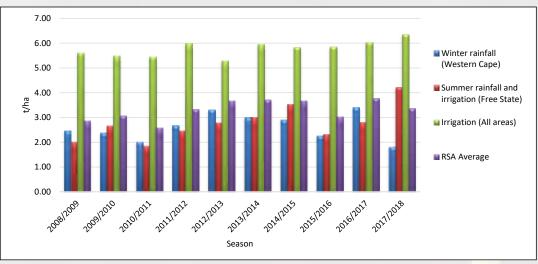
South Africa (comprising nine provinces) is divided into 36 crop production regions with wheat planted in approximately 28 of these regions. Please see Figure 1 (RSA Provincial map) and Figure 2 (RSA Crop Production Regional map) on pages 28 and 29.


The national CEC's estimated total production figures were revised, using as basis for the calculations, SAGIS' published figures of actual deliveries. Figures to determine on-farm usage and retentions obtained from a wheat utilization survey conducted by DAFF, were added to the SAGIS delivery figures to calculate the final crop production figures.

Graph 1: Wheat production in the RSA from the 2007/2008 to 2017/2018 seasons


Figures provided by the CEC.

The final production figure of 1 535 000 tons is 16% lower than the ten-year production average of 1 826 800 tons (2007/2008 to 2016/2017 seasons). The severely drought stricken Western Cape produced 586 800 tons of wheat this season, contributing 38.2% of the total crop, compared to the 57.5% of the previous season. The Free State's wheat production (336 000 tons) was the highest of the last five seasons. This figure was also the second highest nationally. The irrigation areas of the Northern Cape, the third largest wheat producing area this season, produced 311 650 tons, 45 650 tons more than last season. The remainder of the wheat was produced mainly in Limpopo with 132 000 tons, representing an increase of 27% compared to the 2016/2017 season and North West, where production increased by 20% to 83 700 tons. Please see Graphs 1 and 2.


The area utilized for wheat production decreased by 3.3% to 491 600 hectares from 508 365 hectares in the previous season. The almost 51% decline in dryland area planted in the Free State, were off set by a 56% increase in irrigation area planted and a 35% total yield increase. Nationally, dry land area decreased by 9.7% year on year and irrigation area increased by close to 22% year on year. Please see Graph 3.

Graph 3: Area planted per production area over seasons

The yield in the main production areas ranged from 1.80 tons per hectare (t/ha) in the winter rainfall area of the Western Cape to 4.20 t/ha in the Free State (summer rainfall and irrigation) to 8.20 t/ha for irrigation wheat produced in the Northern Cape. The national yield average decreased from 3.76 t/ha in the previous season to 3.12 t/ha. The drought in the Western Cape was the main contributor to this decrease in yield. Please refer to Graph 4.

Figures provided by the CEC.

Graph 4: Average yield per production area over seasons

Table 1 provides an overview of the dry land versus irrigation wheat production in the 2017/2018 season, compared to the 2016/2017 season.

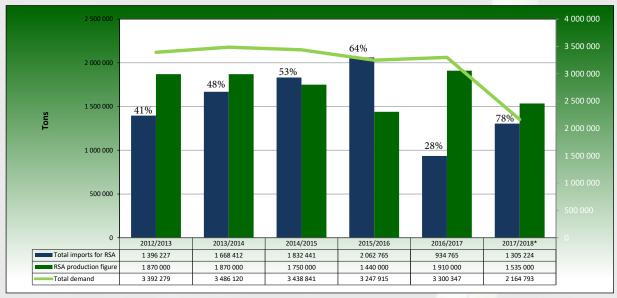
			2016/2017			2017/2018	
Province	Type of production	Hectares planted, ha	Production, tons	Yield, t/ha	Hectares planted, ha	Production, tons	Yield, t/ha
	Dryland	315 000	1 055 700	3.35	320 000	562 800	1.76
Western Cape	Irrigation	8 000	42 500	5.31	6 000	24 000	4.00
	Total	323 000	1 098 200	3.40	326 000	586 800	1.80
	Dryland	1 000	1 000	1.00	-	-	-
Northern Cape	Irrigation	34 000	265 000	7.79	38 000	311 650	8.20
	Total	35 000	266 000	7.60	38 000	311 650	8.20
	Dryland	86 000	184 000	2.14	42 500	74 000	1.74
Free State	Irrigation	24 000	124 460	5.19	37 500	262 000	6.99
	Total	110 000	308 460	2.80	80 000	336 000	4.20
	Dryland	700	1 700	2.43	600	1 400	2.33
Eastern Cape	Irrigation	1 500	9 300	6.20	1 300	8 100	6.23
	Total	2 200	11 000	5.00	1 900	9 500	5.00
	Dryland	-	-	-	- 10	-	-
KwaZulu-Natal	Irrigation	6 500	37 050	5.70	7 500	45 750	6.10
Total		6 500	37 050	5.70	7 500	45 750	6.10
	Dryland	300	900	3.00	500	1 500	3.00
Mpumalanga	Irrigation	2 000	12 900	6.45	3 500	23 900	6.83
	Total	2 300	13 800	6.00	4 000	25 400	6.35
	Dryland	850	2 000	2.35	1 000	3 600	3.60
Limpopo	Irrigation	<mark>16</mark> 150	101 700	6.30	19 000	128 400	6.76
	Total	17 000	103 700	6.10	20 000	132 000	6.60
	Dryland	30	70	2.33	-		27.65 -2
Gauteng	Irrigation	335	2 120	6.33	700	4 200	6.00
	Total	365	2 190	6.00	700	4 200	6.00
	Dryland	80	200	2.50	80	200	2.50
North West	Irrigation	11 920	69 400	5.80	13 420	83 500	6.22
	Total	12 000	69 600	5.80	13 500	83 700	6.20
	Dryland	403 960	1 245 570	3.08	364 680	643 500	1.76
RSA	Irrigation	104 405	664 430	6.36	126 920	891 500	7.02
	Total	508 365	1 910 000	3.76	491 600	1 535 000	3.12

Table1: Wheat production overview over two seasons

Figures provided by the CEC.

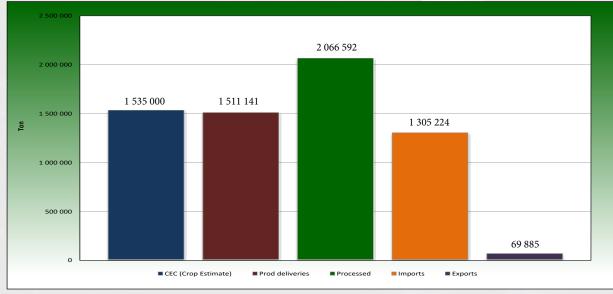
Figures provided by the CEC.

Supply and Demand


World wheat production for the 2017/2018 season is estimated at 757.92 million metric tons according to the *World Agricultural Supply and Demand Estimates (WASDE) report 579 of 12 July 2018*, world production for 2018/2019 is projected to be 736.26 million metric tons.

South Africa is a net importer of wheat and relies on imports to supply local demand. Demand for wheat processing (human, animal, and gristing) was fairly stable over the past four seasons, varying 63 116 tons between the highest and lowest. Eight months into the 2017/2018 season this figure stands at 2 066 592 tons, 65% of the previous season's figure.

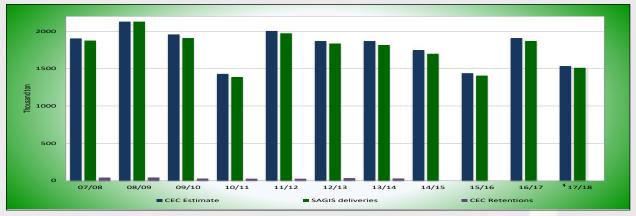
During the 2016/2017 season 934 765 tons of wheat were imported for local use. This figure constitutes an almost 55% decrease compared to the severe drought stricken 2015/2016 season. A quarter (237 508 tons) of the total amount of wheat imported during the 2016/2017 season, originated in Germany, followed by 182 993 tons from the Russian Federation and 144 402 tons from the Czech Republic. Please see pages 86 to 107 for the quality of the wheat imported during 2016/2017. 92 898 tons of local wheat were exported to countries such as Zimbabwe, Botswana and Lesotho and Zambia during the corresponding period.


The amount of wheat imported for local consumption during the current marketing season (up to 13 July 2018), amounts to 1 677 162 tons according to SAGIS. Almost 36% of this wheat originated in the Russian Federation.

The RSA wheat marketing season commences on the 1st of October every year.

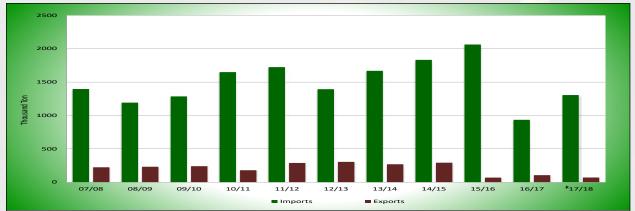
Graph 5: Wheat import figures as a percentage of the total demand over six seasons

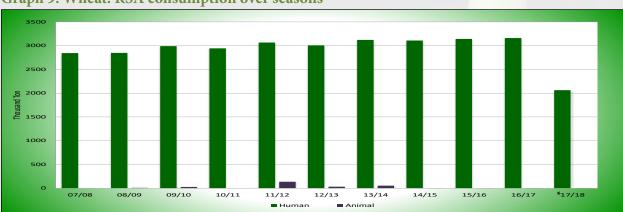
*2017/2018 season figure includes imports and total demand from October to May.

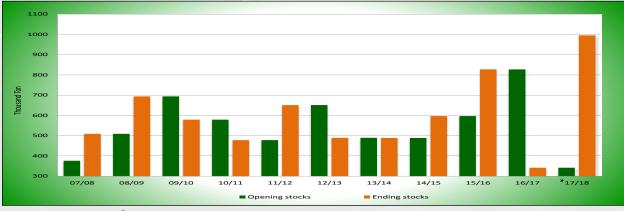


Graph 6: Wheat supply and demand overview 2017/2018 season (Oct - May)

Figures provided by SAGIS, (Publication date: 2018-06-26)

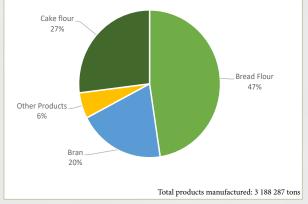

ion Service NPC	gsdiens NNNN
Informat	aninligtin
an Grain	anse Gra
uth Africe	d Afrikad
501	O Sui
Ě	-
L	2
S	
V)


WHEAT: SUPPLY AND DEMAND TABLE BASED ON SAGIS' INFO	MAND TAI	3LE BASEI	D ON SAG	IS' INFO							Publicatio	Publication date: 2018-06-26	18-06-26					
																	Current	10 YEAR
						Seat	Season (Oct - Sep)	ep)									Season Oct - May	AVEK- AGE
	01/02	02/03	03/04	04/05	05/06	06/07	07/08	08/09	09/10	10/11	11/12	12/13	13/14	14/15	15/16	16/17	17/18	2016/17
							F										8	
CEC	2 493 000	2 321 000	1540000	1 680 000	1 905 000	2 105 000	1 905 000 2	2 130 000	1 958 000	1 430 000	2 005 000	1 870 000	1 870 000	1 750 000	1 440 000	1 910 000	1 535 000	1 639 800
CEC (Retention)		33 000	40 000	38 000	50 000	40 000	42 000	43 000	29 000	27 000	26 500	35 000	30 000	0	0	0	0	20 250
SUPPLY									L									
Opening stock (1 Oct)	551 000	580 000	897 000	598 000	574 000	582 000	376 000	509 000	694 000	579 000	478 000	651 180	489 253	488 526	596 823	827 232	341 424	519 976
Prod deliveries	2 415 000	2 387 000	1 512 000	1 670 000	1 893 000	2 045 000	1 876 000 2	2 130 000	1 910 000	1 389 000	1 973 000	1 837 137	1 816 981	1 699 546	1 406 752	1 870 525	1 511 141	1 609 196
Imports	$407\ 000$	747 000	1 042 000	1 227 000	1 055 000	777 000	1 396 000 1	1 192 000	1 285 000	1 649 000	1 724 000	1 393 215	1 668 412	1 832 441	2 062 765	934 765	1 305 224	1 346 919
Surplus	0	0	6 000	6 000	000 6	32 000	0	13 000	0	23 000	14 000	0	0	15 151	8 807	9 249	2 587	8 321
Total supply	3 373 000	3 714 000	3 457 000	3 501 000	3 531 000	3 436 000	3 648 000 3	3 844 000	3 889 000	3 640 000	$4\ 189\ 000$	3 881 532	3 974 646	4 035 664	4 075 147	3 641 771	3 160 376	3 484 411
DEMAND									L									
Processed	2 541 000	2 577 000	2 653 000	2 736 000	2 793 000	2 820 000	2 845 000 2	2 857 000	3 017 000	2 945 000	3 202 000	3 040 086	3 175 834	3 112 718	3 144 414	3 163 196	2 066 592	2 732 641
-human	2 519 000	2 575 000	2 652 000	2 734 000	2 781 000	2 818 000	2 844 000 2	2 849 000	2 991 000	2 944 000	3 066 000	3 008 378	3 122 134	3 109 022	3 142 077	3 160 660	2 064 260	2 711 414
-animal	22 000	2 000	1 000	2 000	12 000	2 000	1 000	8 000	26 000	1 000	136 000	31 694	53 695	3 696	2 337	2 536	2 332	21 226
-gristing	0	0	0	0	0	0	0	0	0	0	0	14	5	0	0	0	0	1
-bio-fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Withdrawn by producers	31 000	24 000	13 000	7 000	10 000	7 000	12 000	12 000	14 000	6 000	4 000	3 934	3 127	1 320	1 834	1 880	910	5 697
Released to end-consumers	7 000	5 000	2 000	2 000	4 000	4 000	2 000	5 000	3 000	6 000	7 000	7 322	3 095	2 802	1 907	1 256	1 458	3 629
Seed for planting purposes	27 000	20 000	21 000	18 000	26 000	17 000	22 000	26 000	17 000	13 000	18 000	15 998	18 198	22 705	18 800	24 067	16 052	17 757
Net receipts(-)/disp(+)	15 000	11 000	12 000	6 000	5 000	1 000	26 000	19 000	15 000	13 000	19 000	19 990	16 172	7 468	12 435	5 101	9 896	13 699
Deficit	23 000	1 000	0	0	0	0	9 000	0	4 000	0	0	713	1 243	0	0	0	0	1 371
Exports	$149\ 000$	179 000	158 000	158 000	111 000	211 000	223 000	231 000	240 000	179 000	288 000	304 236	268 451	291 828	68 525	104 847	69 885	193 044
Total Demand	2 793 000	2 817 000	2 859 000	2 927 000	2 949 000	3 060 000	3 139 000	3 150 000	3 310 000	3 162 000	3 538 000	3 392 279	3 486 120	3 438 841	3 247 915	3 300 347	2 164 793	2 967 838
Ending Stock (30 Sep)	580 000	897 000	598 000	574 000	582 000	376 000	509 000	694 000	579 000	478 000	651 000	489 253	488 526	596 823	827 232	341 424	995 583	516 573
- processed p/month	211 800	214 800	221 100	228 000	232 800	235 000	237 100	238 100	251 400	245 400	266 800	253 341	264 653	259 393	262 035	263 600	258 324	227 717
- months' stock	2.7	4.2	2.7	2.5	2.5	1.6	2.1	2.9	2.3	1.9	2.4	1.9	1.8	1.8	3.2	1.3	3.9	2
Note: *** Figures for current season up to date	season up t	o date																

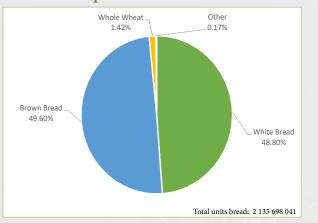


Figures provided by SAGIS, *17/18 figures (Oct - May)

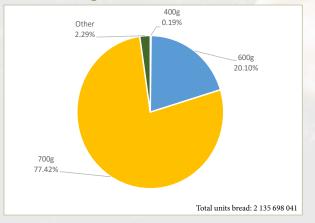
South African Wheat Crop Quality Report 2017/2018 Season

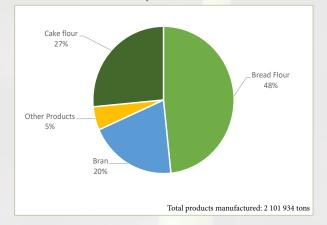

Wheat Product Information

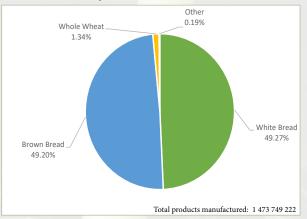
On 14 November 2014, the Minister of Agriculture, Forestry & Fisheries announced new statutory measures for the manufacturing of maize & wheaten products.

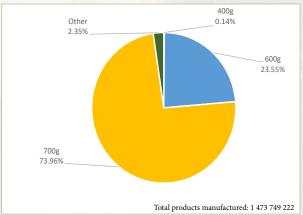

To comply with the abovementioned statutory measures, manufacturers of these products have to register with SAGIS and submit information with regards to the manufacture, import and export of wheat products, as well as the manufacture of pan baked products.

Please see graphs 11 to 16 below as well as the tables on pages 9 and 10 for wheat product and pan baked product progressive figures received by SAGIS.




Graph 13: Pan baked bread per type from Oct 2016 - Sept 2017


Graph 15: Pan baked bread per mass Oct 2016 - Sept 2017


Graph 12: Wheat products manufactured from Oct 2017 - May 2018

Graph 14: Pan baked bread per type from Oct 2017 - May 2018

8

South African Wheat Crop Quality Report 2017/2018 Season

WHEATEN PRODUCTS MAN	UFACTURED PER MARKETIN	IG YEAR	
	Marketing year: Oct 2015 - Sep 2016 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2016 - Sep 2017 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2017 - May 2018 Manufactured Tons Progressive: 8 Months
Cake Flour	821 935	859 666	556 773
Self-Raising Flour	16 210	17 845	10 679
White Bread Flour	1 114 696	1 086 256	746 009
Brown Bread Flour	402 431	427 996	267 231
Other Flour (Industrial)	141 380	143 889	82 967
Whole Wheat Meal	3 027	3 566	2 281
Bran	629 298	630 287	421 325
Semolina	16 334	18 782	14 669
Total (Tons)	3 145 311	3 188 287	2 101 934

WHEATEN PRODUCTS IMPO	ORTED PER MARKETING YEA	R	
	Marketing year: Oct 2015 - Sep 2016 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2016 - Sep 2017 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2017 - May 2018 Manufactured Tons Progressive: 8 Months
Cake Flour	40	0	0
Self-Raising Flour	0	0	0
White Bread Flour	840	0	0
Brown Bread Flour	40	0	0
Other Flour (Industrial)	0	0	0
Whole Wheat Meal	0	0	0
Bran	450	243	406
Semolina	0	0	0
Total (Tons)	1 370	243	406

WHEATEN PRODUCTS EXPO	ORTED PER MARKETING YEA	R	
	Marketing year: Oct 2015 - Sep 2016 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2016 - Sep 2017 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2017 - May 2018 Manufactured Tons Progressive: 8 Months
Cake Flour	2 125	1 714	1 621
Self-Raising Flour	0	29	23
White Bread Flour	7 274	1 966	5 851
Brown Bread Flour	1 853	3 796	13 050
Other Flour (Industrial)	1 976	86	74
Whole Wheat Meal	0	0	16
Bran	393	223	249
Semolina	0	0	0
Total (Tons)	13 621	7 814	20 884

SAGIS South African Grain Information Service NPC Suid Afrikaanse Graaninligtingsdiens NWM Reg no. 1997/019186/00

	Marketing year: Oct 2015 - Sep 2016 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2016 - Sep 2017 Manufactured Tons Progressive: 12 Months	Marketing year: Oct 2017 - May 2018 Manufactured Tons Progressive: 8 Months
WHITE BREAD			
400g (Units)	2 536 957	2 772 734	1 302 447
600g (Units)	184 045 416	192 408 295	158 066 532
700g (Units)	830 681 443	839 930 529	561 510 572
Other (Units)	9 294 235	7 153 230	5 288 823
White Bread (Total Units)	1 026 558 051	1 042 264 788	726 168 374
BROWN BREAD			
400g (Units)	1 064 964	1 131 378	642 736
600g (Units)	213 511 631	235 801 836	188 413 304
700g (Units)	771 863 722	805 745 291	524 395 182
Other (Units)	20 137 121	16 638 015	11 595 470
Brown Bread (Total Units)	1 006 577 438	1 059 316 520	725 046 692
WHOLE WHEAT			
400g (Units)	27 137	16 565	9 401
600g (Units)	507 374	617 299	394 876
700g (Units)	8 707 512	7 397 611	3 895 468
Other (Units)	22 726 394	22 364 064	15 461 334
Whole Wheat (Total Units)	31 968 417	30 395 539	19 761 079
OTHER			
400g (Units)	61 892	56 236	44 364
600g (Units)	385 483	431 695	223 043
700g (Units)	487 173	399 645	219 039
Other (Units)	1 946 688	2 833 618	2 286 631
Other (Total Units)	2 881 236	3 721 194	2 773 077
Total	2 067 985 142	2 135 698 041	1 473 749 222

Assuring the quality of South African wheat

South Africa has three major wheat-breeding programs. A new or introduction cultivar is only released for planting if it possesses better agronomical as well as better flour quality characteristics than the cultivars planted commercially in a specific area.

The classification of wheat cultivars is an attempt to provide the wheat industry with new cultivars that perform well agronomically and possess suitable milling, rheological and baking characteristics. Analytical procedures and classification norms are compiled in conjunction with wheat breeders, millers and bakers to ensure marketdirected and quality-driven wheat production in the interest of wheat producers and processors. The availability of new and improved wheat varieties is important as a constant demand exists for higher yields, better quality, better processing properties and increased disease resistance.

Classification norms use cultivars as biological quality standards as a frame of reference against which new breeding lines are evaluated. Only cultivars that are successfully grown commercially and possess acceptable agronomical and quality characteristics may be considered as biological quality standards.

As the breeding and development of new wheat varieties with the suitable quality characteristics is an expensive, long-term project, classification norms and quality standards are provided to breeders as guidelines that should stand the test of time. Changing the classification norms and establishing new quality standards are for this reason thoroughly investigated and carefully considered to ensure that the long-term goals of breeding programs are achieved. Recent amendments include reducing the number of years' data (from three to two) required for final release of irrigation cultivars as well as relaxed quality criteria with regards to certain quality parameters for high yielding lines.

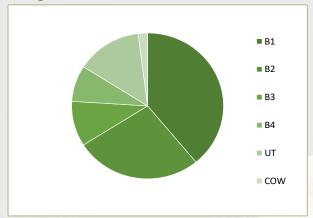
The effect of the climate, rainfall, environmental interaction, cultivation practices and other factors that influence wheat quality, makes the use of fixed criteria or norms for classification purposes impractical. For this reason, cultivars are used as biological quality standards, and acceptable deviations from the standard are established as classification norms. Producers continuously strive to improve the wheat yield and quality by selecting the best cultivars for commercial production in a specific area. High grading standards are set to ensure adequate quality control.

Historically, breeder lines were approved for final classification by the Research Technical Committee for Wheat of the Winter Cereal Trust. The function of evaluating and approving cultivars for release, is now (since April 2018) performed by the Wheat Forum Cultivar Committee. A line approved for release, is registered as a cultivar in accordance with the Plant Breeders' Act, 1976 (Act 15 of 1976) by the applicable breeder company (plant breeder's rights are a form of Intellectual Property rights).

Up until the 2016/2017 season, each cultivar also had to be classified in terms of the Regulations relating to the Grading, Packing and marking of Bread Wheat intended for Sale in the Republic of South Africa under the Agricultural Product Standards (APS) Act, 1990 (Act No. 119 of 1990). The cultivar was then included on the Cultivar list as determined by the Executive Officer: Agricultural Product Standards. All cultivars listed are subject to compulsory certification by SANSOR (South African National Seed Organization) on behalf of the Minister of Agriculture, to ensure cultivar purity and good seed quality. Cultivars can only be listed on the Cultivar list if Breeders' Rights have been obtained.

The Department of Agriculture, Forestry and Fisheries decided to exclude the Cultivar list from the Agricultural Product Standards Act and the Wheat Forum requested that the Cultivar list as well as a document 'Analysis Procedure and Evaluation Norms for the Classification of Wheat Breeders' Lines for the RSA', including the Wheat Cultivar Release Criteria, are to be hosted on the website of the SAGL. SAGL was tasked to submit a proposal regarding the protocol that is to apply in respect of the acceptance, maintenance and publication of these documents, this process is currently underway.

Since wheat is a self-pollinating crop, meaning that grain produced has the same genetic composition as the


parent, seed can be harvested and replanted, which results in less seed being sold. In South Africa, approximately 70% of wheat is planted with farm saved seed. The investment in the development of new cultivars is as a result only covered by a small portion of the market. A lack of return on investment therefore prevent new seed companies and new cultivars from entering the market. This situation is however not unique to South Africa. In order to address this issue, various End Point Royalty systems were investigated and the outcome was a proposal to establish a statutory levy for breeding and technology, in addition to the industry statutory levy that has been implemented for many years.

After meetings and consultations with stakeholders and various experts, the South African Cultivar & Technology Agency NPC (SACTA) was established in June 2016. SACTA has been recommended by roleplayers in the different industries as the body to administer the breeding and technology levy and will make payments to the seed companies from funds collected by means of the levies. The payments will be according to actual performance, calculated each year based on the market share achieved. It is envisaged that this system will eventually be implemented for all self-pollinating crops.

Wheat grades

The 304 representative crop samples were graded as follows: 47% was graded B1, 25% was graded B2, 7% was graded B3, 5% was graded B4, 14% UT (Utility Grade) and 2% COW (Class Other Wheat). The majority of the samples (71%) downgraded to Utility Grade was as a result of either the percentage screenings or mainly other grain and unthreshed ears, individually, or in combination with the combined deviations, exceeding the maximum allowable level for grades B1 to B4. Most of these downgraded samples originated from the Western Cape.

Grade B1 wheat in the Free State province amounted to 51% (71% in the previous season). In the Irrigation areas 43% (52% in the previous season) of the wheat was graded as B1 and in the Western Cape Province 48% was graded as B1 (22% in the previous season).

Graph 17: Percentage of samples per class and grade in the 2016/2017 season

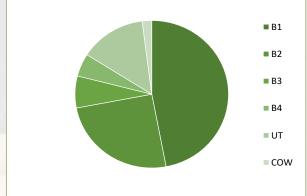


Table 2: Bread Wheat Grading Table

							Maximum	Maximum percentage permissible deviation (m/m)	missible dev	iation (m/m	(1		
		MUMUMUM	6	Α	В	С	D	E	F	G	Н	Ι	J
Grade	Hectolitre mass, kg/hl	Falling number, seconds	Protein content, %	Heavily frost damaged kernels	Field fungi	Storage fungi	Screenings	Other grain and unthreshed ears	Gravel, stones and turf	Foreign matter plus F	Heat damaged kernels	Damaged kernels plus H	Combined deviations (D+E+G+I)
Grade 1	77	220	12	5	2	0.5	Э	1	0.5	1	0.5	2	5
Grade 2	76	220	11	5	2	0.5	3	1	0.5	1	0.5	2	5
Grade 3	74	220	10	5	2	0.5	3	1	0.5	1	0.5	2	5
Grade 4	72	200	6	5	2	0.5	4	1	0.5	1	0.5	2	5
Utility grade	70	150	8	10	2	0.5	10	4	0.5	3	0.5	5	10
Other Wheat	<70	<150	<8	>10	>2	>0.5	>10	>4	>0.5	>3	>0.5	>5	>10
Minimum size of working samples	1 kg	300 g clean	Apparatus instructions	25 g sifted	25 g sifted	100 g sifted	500 g unsifted	50 g sifted	100 g sifted	100 g sifted	100 g sifted	25 g sifted	1
Government Notice No. R. 64 of 29 January 2016.	. 64 of 29 Janua	IN 2016.											

South African Wheat Crop Quality Report 2017/2018 Season

WHEAT SEED SOLD BY COMMERCIAL GRAIN STORAGE COMPANIES TO WHEAT PRODUCERS FOR THE 2017 PLANTING SEASON

<u>Cultivar</u>	<u>%</u>	Cultivar	<u>%</u>
SST 056	17.73	SST 347	0.33
SST 0147	16.44	SST 316	0.31
SST 087	9.04	SST 866	0.31
SST 0127	8.91	Elands	0.22
SST 0117	7.79	PAN 3111	0.19
SST 884	6.16	SST 387	0.16
SST 015	5.59	PAN 3368	0.12
SST 895	3.13	PAN 3408	0.11
SST 835	3.13	Kariega	0.10
SST 88	2.99	CRN 826	0.06
SST 096	2.85	Duzi	0.05
SST 806	2.45	SST 876	0.044
SST 875	2.39	Senqu	0.041
PAN 3471	1.85	PAN 3118	0.0248
SST 843	1.25	PAN 3379	0.0248
Matlabas	1.09	SST 877	0.0192
SST 356	0.92	Krokodil	0.0170
PAN 3497	0.83	SST 8135	0.0165
PAN 3161	0.72	Ratel	0.0146
SST 374	0.66	Koonap	0.0051
PAN 3400	0.66	PAN 3195	0.0051
SST 822	0.63	PAN 3120	0.0034
SST 027	0.60	SST 317	0.0034
			100

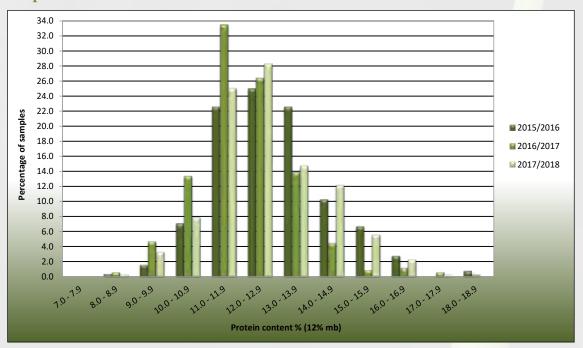
Most popular cultivars according to cultivar identification

Farmers in the Western Cape preferred SST 087 (32.5%), SST 056 (24.4%) and SST 88 (15.3%). SST 015 (13.8%) and SST 0127 (13.1%) were also popular cultivars.

In the Vaal and Orange River areas PAN 3471 (28.7%), SST 884 (23.1%) and SST 875 (19.7%) were the most popular cultivars.

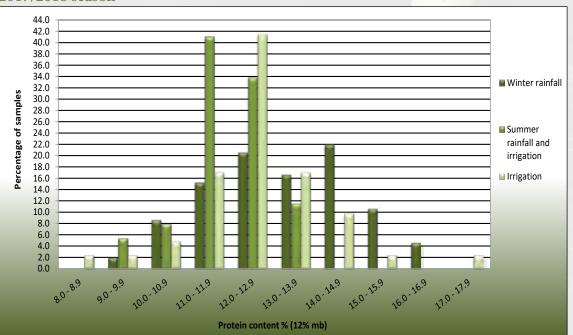
The most preferred cultivars in North West province were SST 843 (30.9%), followed by SST 884 (19.8%) and SST 875 (15.5%).

In regions 21 to 24 of the Free State the most planted cultivar was PAN 3471 (37.4%), followed by SST 387 (11.2%), SST 884 (9.5%), PAN 3400 (8.5%) and SST 875 (8.0%). PAN 3161 was the preferred cultivar in regions 25 to 28 and represented 20.5%. SST 884 (14.0%), Elands (10.0%) and PAN 3111 and SST 875 both with 6.5%, were also popular cultivars.


In Mpumalanga, Gauteng, Limpopo and KwaZulu-Natal, SST 884 (34.0%) was the preferred cultivar, followed by SST 875 (30.1%), SST 895 (10.7%) and SST 835 (9.7%).

The above-mentioned percentages are weighted averages based on the top five cultivars per region provided on pages 34 to 60. The top five cultivars per region were calculated from the cultivar identification done on each of the 304 crop samples.

Crop quality of the 2017/2018 season


All national, seasonal and regional averages provided in this report are weighted averages.

The national whole wheat protein average increased from 12.0% in the previous season to 12.6%. This is the second highest average since the 2004/2005 season and can be attributed to the above average protein values observed in the Western Cape where severe drought conditions were experienced. Please see Graphs 19 and 20 for the protein content distribution over the last three seasons and between the three major production areas.

The Winter rainfall areas reported the highest whole wheat protein average, namely 13.2% since the start of this annual survey twenty years ago. The Irrigation areas averaged 11.9% and the production regions in the Free State province 12.6%.

South African Wheat Crop Quality Report 2017/2018 Season

¹⁵

Flour protein content is on average 0.5 to 1.2% lower than that of whole wheat and averaged 11.3% this season. The protein loss can be attributed to the removal of the bran and aleuron layer as well as the germ during milling. The protein content is reported on a 12% moisture basis.

The average hectoliter mass decreased by 0.8 kg/hl to 80.7 kg/hl compared to the previous season and compares very well with the eight-year weighted average of 80.6 kg/hl for determinations done by means of the Kern 222 instrument. Of the 31 samples that reported values below the 77 kg/hl minimum level for grade B1 wheat, 26 originated in the Western Cape (Winter rainfall area) as can be expected due to the drought, the remaining five samples originated from the Free State production regions. The regional averages ranged from 79.1 kg/hl in the Western Cape to 83.2 kg/hl in the Irrigation areas.

The 1000 kernel mass, reported on a 13% moisture basis, decreased from 38.6 g last season to 37.7 g this season. The 2015/2016 season's average was 36.8 g. Averages over production areas varied from 36.2 g in the Western Cape to 39.6 g in the Irrigation areas. The weighted average percentage screenings obtained with a 1.8 mm slotted sieve was 1.51%, 0.35% lower than the previous season and also the lowest value of the past five seasons. The Winter rainfall areas reported the highest average percentage, namely 1.79% and the Irrigation areas the lowest of 1.05%. 28 of the 304 samples exceeded the 3% maximum permissible screenings level for grade B3 and of these 11 exceeded the 4% maximum permissible level for grade B4. Most of these samples originated in the Western Cape.

The national weighted average falling number value was 371 seconds, higher than last season's 356 seconds and equal to the ten-year weighted average value of 369 seconds. Five of the samples analysed for this survey reported falling number values below 250 seconds and of these four were below 220 seconds. All but one of these samples originated in the Free State area, the other sample in the Western Cape. The highest average falling number value of 385 seconds, was reported for the Irrigation areas. All falling number values reported, are corrected for the altitude at which the test is performed. The results of this, as well as previous surveys, provide evidence that low falling number values are not a significant problem in South Africa.

The weighted mixogram peak time on flour milled on the Quadromat Junior mill averaged 2.7 minutes, equal to the previous two seasons and slightly shorter than the ten-year average of 2.9 minutes. The weighted mixogram peak time of the flour from the Bühler mill was 2.6 minutes, also equal to the previous two seasons. Mixing time, in general, decreases as protein content increases to about 12.0%, thereafter remaining approximately constant with flour protein increases.

Extraction rate is an indication of the flour yield that can be obtained from a given amount of wheat. The extraction rate achievable on industrial scale mills is a number of percentage points higher than on laboratory scale mills due to an increase in roller surface area. Industrial type mills are also set to obtain optimum extraction rates within certain quality parameters, whereas the milling procedure and laboratory scale mill at SAGL is not set to optimize extraction but rather indicate differences in milling quality. Composite samples per class and grade per production region are cleaned, tempered/conditioned and then milled to facilitate flour and dough quality assessment. The weighted average Bühler MLU 202 laboratory mill extraction for the 70 composite samples was 73.1%, higher than the 72.5% of the previous season.

The average Kent Jones colour this season was -4.1 KJ units, lower than the -3.8 KJ units of the previous season. As from the 2012/2013 survey, a dry colour determination by means of a Konica Minolta CM-5 spectrophotometer is also included. Please see the comparison of the CIE L*a*b* values obtained below. The average and range (in brackets) are provided to assist with interpretation of these parameters:

```
2017/2018 season: L* 93.78 (93.44 – 94.24), a* 0.43 (0.30 – 0.57) and b* 9.84 (8.36 – 11.24)
2016/2017 season: L* 93.71 (92.17 – 94.30), a* 0.46 (0.34 – 0.63) and b* 10.12 (9.03 – 11.65)
2015/2016 season: L* 93.78 (92.99 – 94.40), a* 0.47 (0.06 – 0.59) and b* 9.75 (8.51 – 11.39)
2014/2015 season: L* 93.77 (92.98 – 94.30), a* 0.44 (0.22 – 0.59) and b* 9.72 (8.21 – 11.11)
2013/2014 season: L* 93.99 (93.11 – 94.59), a* 0.40 (0.29 – 0.57) and b* 9.50 (8.49 – 10.63)
2012/2013 season: L* 93.85 (93.14 – 94.39), a* 0.41 (0.26 – 0.54) and b* 9.92 (8.65 – 11.35).
L* represents lightness (100 being white and 0 being black), a* represents green to red variation and b* represents
variation from blue to yellow.
```

The average ash content was calculated to be 0.60 % on a dry basis (moisture free basis), compared to the 0.59% of the previous season. According to the Wheat product regulations (Government Notice No. R. 405 of 5 May 2017), cake flour's ash content should not exceed 0.65%, white bread flour's ash content should be between 0.60 to 1.00% and that of all-purpose wheat flour between 0.55 and 0.75%.

The Rapid Visco Analyser (RVA) average peak viscosity of the samples analysed was 2269 cP (centipoise), the minimum viscosity 1715 cP and the final viscosity 2548 cP. Last season the values were 2257 cP, 1742 cP and 2570 cP respectively. The analysis conditions were kept constant during all of the analyses. Results are reported on a 14% moisture basis.

The wet gluten (14% mb) averaged 30.7% and the dry gluten, also on a 14% moisture basis, 10.4%. These values are equal to the previous season. The average gluten index value was 93 (94 last season), ranging between 75 and 100. The gluten index provides an indication of the gluten strength (higher being better) and is not influenced by the protein content. A value between 70 and 100 is generally accepted as good quality for pan bread baking purposes.

The farinograph analysis resulted in an average water absorption of 60.3% (60.1% the previous season) and an average development time of 5.5 minutes (5.2 minutes the previous season). The stability value of 8.0 minutes compared well with the 8.3 minutes reported previously. There was also no significant difference between the mixing tolerance indexes of these two seasons, namely 40 BU and 37 BU respectively.

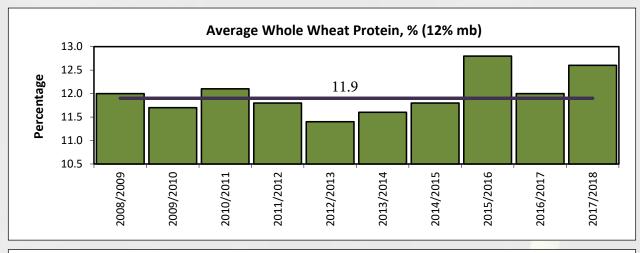
The average alveogram strength was 39.2 cm^2 and the average P/L value $0.81 (37.0 \text{ cm}^2 \text{ and } 0.57$ the previous season). The distensibility of the dough as determined by the Alveograph decreased compared to the previous season, indicating a more elastic dough.

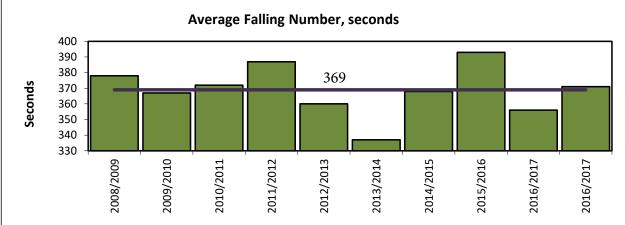
The average extensogram strength was 106 cm² (99 cm² previous season). The maximum height in Brabender Units were higher than last season (382 BU in 2017/2018 and 364 BU in 2016/2017), but still compared well. The extensibility values were similar, 198 mm now and 193 mm previously.

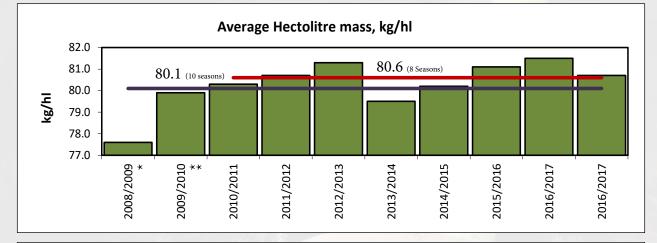
When viewing the comparisons between seasons (Table 4 and Graph 22 on pages 20 to 22), it is interesting to notice that the average values of the 2017/2018 and 2015/2016 seasons' farinograph, alveograph and extensograph results are almost identical, while the 2016/2017 and 2014/2015 results are very similar.

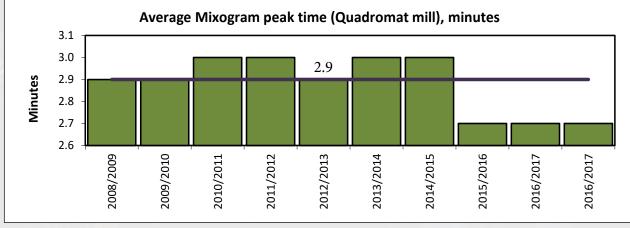
The 100 g loaves baked using the straight-dough optimized bread making method, received an evaluation rated as "Excellent". The basis for this evaluation refers to the relationship between the protein content and the bread volume.

This is the second season, that amino acid profiles of local wheat were determined as part of this survey. Total Amino acid analyses that included 18 amino acids namely Aspartic acid, Glutamic acid, Serine, Glycine, Histidine, Arginine, Threonine, Alanine, Proline, Tyrosine, Valine, Isoleucine, Leucine, Phenylalanine, Lysine, Tryptophan, Cystine and Methionine were performed on forty samples, randomly selected to represent different regions as well as grades. Please see Table 7 on pages 68 and 69 for the results and page 77 for information on the methods followed.


Mycotoxin analyses were performed on forty wheat samples, randomly selected to represent different regions as well as grades. The samples were tested by means of a SANAS ISO/IEC 17025 accredited multi-mycotoxin screening method using UPLC-MS/MS. With this technique simultaneous quantification and confirmation of Aflatoxin B1; B2; G1; G2, Fumonisin B1; B2; B3, Deoxynivalenol, 15-ADON, HT-2 Toxin, T-2 Toxin, Zearalenone and Ochratoxin A is possible in one run.

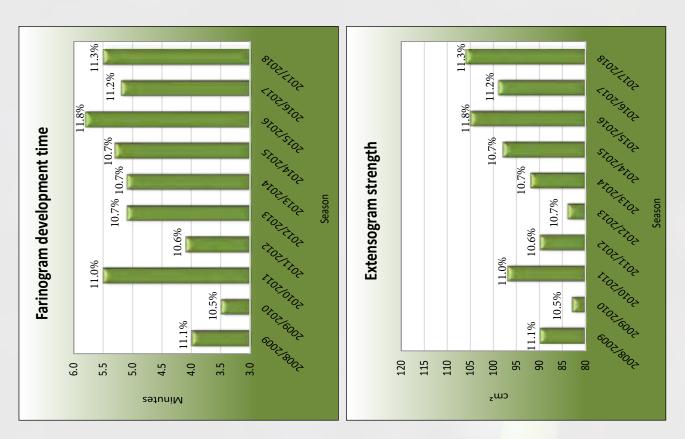

Seven samples tested positive for deoxynivalenol (DON) residues. The average value of the seven positive results was 202 μ g/kg (ppb) and the highest value obtained 570 μ g/kg, which is still well below national and international maximum residue levels. Please see the mycotoxin results on pages 64 and 65. Last season, four samples tested positive for DON residues with an average value of 289 μ g/kg (ppb), the highest value obtained was 501 μ g/kg.


		201	7/2018				201	6/2017	,			201	5/2016	5	
Region	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n
1	12.5	391	76.3	2.5	3	11.9	377	80.5	2.8	3	-	-	-	-	-
2	14.3	343	75.9	2.6	13	11.6	351	79.4	2.7	20	15.0	397	77.1	2.6	10
3	14.6	392	78.1	2.6	52	11.4	359	81.8	2.4	77	14.4	402	78.6	2.7	33
4	13.1	373	79.7	2.8	17	11.2	352	82.1	2.5	30	12.4	379	80.5	2.8	15
5	11.9	361	80.7	2.6	42	11.2	359	80.6	2.5	20	11.1	377	81.0	2.5	23
6	11.8	349	80.2	2.6	24	11.3	343	80.8	2.3	24	11.3	357	80.7	2.4	20
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	11.6	365	84.8	2.3	30	12.0	361	84.3	2.7	38	12.8	378	84.0	2.3	24
11	11.8	397	82.6	2.6	14	12.6	397	81.2	2.7	6	12.5	408	83.2	2.5	7
12	12.6	403	81.0	3.3	4	12.8	360	82.1	3.1	4	13.2	409	82.0	3.0	8
13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	13.0	432	82.3	4.1	3	13.0	371	82.9	2.6	8	12.2	428	79.4	3.0	11
15	12.4	455	82.2	2.9	7	-	-	-	-	-	12.6	410	83.6	2.4	4
16	11.9	380	81.8	2.8	1	-	-	-	-	-	11.5	540	83.8	3.0	1
17	12.9	378	81.9	3.3	4	11.4	373	81.4	2.5	4	-	-	-	-	-
18	12.2	393	81.5	3.0	1	-	-	-	-	-	13.1	430	82.5	2.4	1
19	11.7	382	81.8	3.6	11	12.3	388	81.9	3.2	13	11.8	402	81.1	3.0	13
20	11.7	372	82.5	2.9	8	12.2	373	81.7	3.4	15	12.3	425	83.8	3.3	8
21	12.5	297	81.9	2.8	1	-	-	-	-	-	13.0	460	78.7	3.8	1
22	11.6	352	80.0	3.0	3	15.8	349	78.7	2.7	3	12.7	409	83.2	2.4	2
23	13.9	388	80.8	2.5	6	15.9	309	77.1	2.8	9	13.7	409	78.6	3.2	8
24	12.4	400	80.3	2.8	11	13.7	347	82.0	2.7	8	12.3	398	81.3	2.6	11
25	-	-	-	-	-	14.0	293	78.9	3.3	11	13.5	349	81.7	2.7	9
26	12.4	290	79.1	3.4	5			-	-	-	13.8	386	79.2	2.9	2
27	12.2	358	79.4	3.3	3	18 -	-	-	-	-		-	-	-	-
28	12.7	272	79.3	3.0	12	13.0	327	80.1	3.4	10	13.5	379	81.4	2.5	11
29	-	-		-	-	12.7	291	80.8	3.1	1	-	-	-		-
30	-		-	-	-	-	-	-	-		-	-	-	-	-
31	-	-	-	-	-	-	-	-	-		-	-	-	271	-
32	-	-	-	-	-	13.5	372	81.2	3.1	3	13.4	401	80.6	2.8	3
33	11.8	368	83.7	2.9	11	12.2	399	81.6	3.7	13	12.5	391	85.4	3.0	4
34	12.4	363	81.5	2.9	1	13.2	319	81.2	3.5	3	13.2	399	81.4	2.7	3
35	11.3	366	83.5	3.1	8	11.7	354	82.2	3.0	11	12.1	401	82.3	3.1	11
36	12.4	410	83.4	2.7	9	13.2	379	81.8	3.1	3	13.6	429	84.0	2.9	9
Ave.	12.6	371	80.7	2.7	304	12.0	356	81.5	2.7	337	12.8	393	81.1	2.7	252

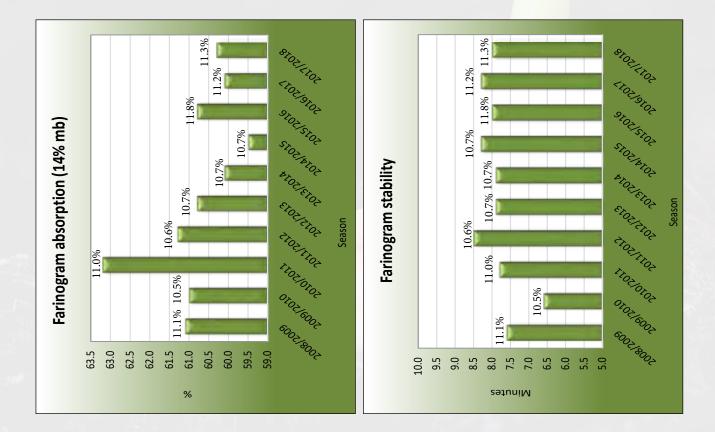

Table 3: Weighted average results for the last three seasons

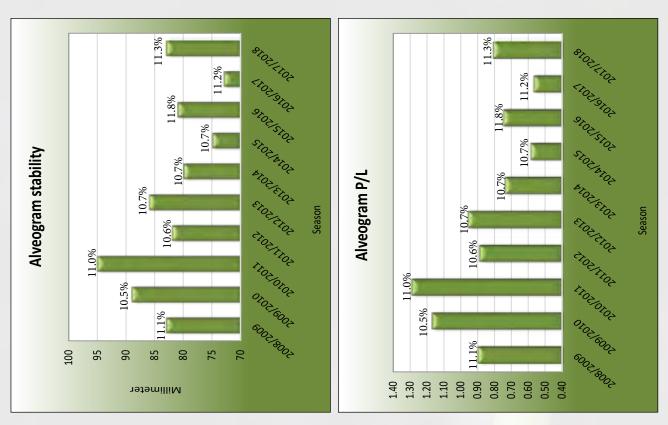
* Hectolitre mass determined using Two-level funnel method

** Includes addition of 2 kg/hl according to Hectolitre mass Dispensation.

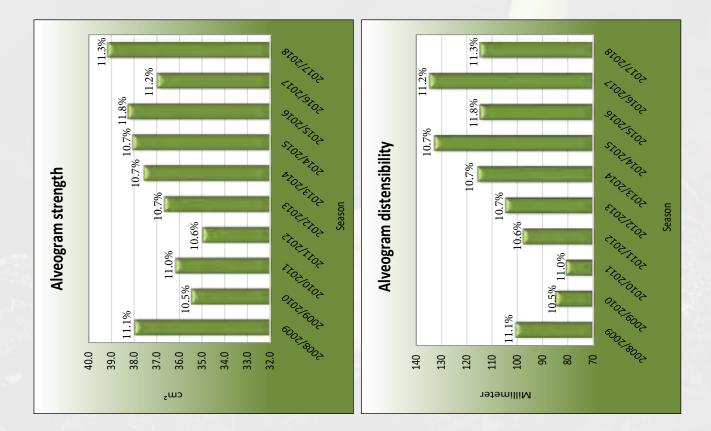

Table 4: Comparison of Flour Quality over thelast four seasons

Flour Quality 2017/2018 season							
Flour protein (12% mb) (%)	11.3	Farinogram abs. (14% mb) (%)	60.3				
Bread volume 100g (cm ³)	1096	Farinogram dev. time (min)	5.5				
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm ²)	39.2				
Wet gluten (14% mb) (%)	30.7	Alveogram P/L	0.81				
Dry gluten (14% mb) (%)	10.4	Extensogram strength (cm ²)	106				


Flour Quality 2016/2017 season							
Flour protein (12% mb) (%)	11.2	Farinogram abs. (14% mb) (%)	60.1				
Bread volume 100g (cm ³)	1040	Farinogram dev. time (min)	5.2				
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm ²)	37.0				
Wet gluten (14% mb) (%)	30.7	Alveogram P/L	0.57				
Dry gluten (14% mb) (%)	10.5	Extensogram strength (cm ²)	99				


Flour Quality 2015/2016 season							
Flour protein (12% mb) (%)	11.8	Farinogram abs. (14% mb) (%)	60.8				
Bread volume 100g (cm ³)	1047	Farinogram dev. time (min)	5.8				
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm ²)	38.3				
Wet gluten (14% mb) (%)	31.9	Alveogram P/L	0.75				
Dry gluten (14% mb) (%)	11.0	Extensogram strength (cm ²)	105				

Flour Quality 2014/2015 season							
Flour protein (12% mb) (%)	10.7	Farinogram abs. (14% mb) (%)	59.5				
Bread volume 100g (cm ³)	889	Farinogram dev. time (min)	5.3				
Mixogram (Bühler) peak time (min)	2.7	Alveogram strength (cm ²)	38.1				
Wet gluten (14% mb) (%)	28 <mark>.</mark> 9	Alveogram P/L	0.59				
Dry gluten (14% mb) (%)	9.8	Extensogram strength (cm ²)	98				



Graph 22: Comparison of rheological quality over seasons (Flour protein content (12% mb) is indicated above each bar)

Graph 22: Comparison of rheological quality over seasons (Flour protein content (12% mb) is indicated above each bar) (continue)

REGIONAL QUALITY SUMMARY

WINTER RAINFALL AREA (Western Cape)

The Western Cape Province has a Mediterranean climate, characterized by cool, wet winters and hot dry summers. More than 80% of the rainfall is received in winter between April and September, making the Western Cape a predominantly winter rainfall area. Mean annual rainfall varies from 200 to 450 mm. The Swartland (on the west coast) and the Rûens (Southern Cape) are the main distinguishable geographic regions of the winter rainfall area.

These two separate wheat farming regions are divided into individual areas according to amongst other their climate, soils and geographic position. The Swartland region is divided into the following areas: Sandveld, Koringberg, Middle Swartland and High Rainfall Area. The Rûens region is divided into the Western Rûens, Southern Rûens and Eastern Rûens.

The Rûens generally receives higher rainfall than the Swartland, but some areas of the Swartland have better, deeper soils. Wheat is generally planted from the second half of April until the middle of June and harvested during October to December.

The climatic conditions in the Swartland region, leading up to the planting season, showed some bleak prospects for the year ahead. Low rainfall together with high temperatures resulted in the depletion of the already low soil moisture. Most parts of the Swartland received about 50 mm of rain in the first five months, compared to the 90 mm in the previous year and the long-term average of about 130 mm for the first five months. Planting conditions were therefore far from ideal.

Climatic conditions in the Rûens varied a lot during the past seasons. Rainfall vaired from 50% less than the long-term average in certain regions to 20% more than the long-term average. The planting season initially started off with sufficient soil moisture, but this diminished as weeks progressed. The Eastern Rûens region was the hardest hit by dry conditions post planting and although good rains were recorded from June/July, damaged was already done in some areas.

The hectolitre mass averaged 79.1 kg/hl compared to the previous season's 81.3 kg/hl. The thousand kernel mass averaged 36.2 g, 3.4 g lower than the previous season and 1.5 g lower than the national average. The average falling number was 370 seconds. The average whole wheat protein content was 13.2% (12% mb), 11.4% in 2016/2017.

The percentage screenings of 1.79% was lower than the previous season's 2.16%, but still the highest of the three areas and 0.28% higher than the national average for 2017/2018. The mixogram peak time (Quadromat Junior mill) averaged 2.6 minutes, the shortest of the three major production areas, although only slightly so. The Bühler extraction averaged 71.5% (average of wheat grades B1 to B4, UT as well as Class Other), slightly lower than 2016/2017. The average wet colour of the flour was -3.9 KJ units and the dry colour L* value (indicating lightness) 93.77. These colour values indicate a white/light flour that is preferred by millers and bakers and compare well to previous seasons. The average ash content was equal to the 0.58% (db) of the previous year.

The flour protein content averaged 12.0%. The average wet and dry gluten values namely 32.5% and 11.1% (14% mb) were respectively 4.4% and 1.5% higher than the previous season. This can be expected given the almost 2% increase in protein content on average. The gluten index was 93. The average farinogram absorption was 60.9% and the development time 5.7 minutes, the stability averaged 9.4 minutes. The average alveogram strength was 41.4 cm², 10.0 cm² higher than last season. The alveogram P/L value was 0.70 compared to the 0.61 of 2016/2017. The average strength on the extensogram was 112 cm². The

overall increase in rheological strength values, compared to the previous season, can be attributed to the higher protein content. The mixogram peak time on the Bühler milled flour averaged 2.4 minutes, similar to last season. The 100-gram baking test showed on average an excellent relationship between protein content and bread volume.

SUMMER RAINFALL AND IRRIGATION AREA (Free State)

The summer rainfall area (predominantly the Free State Province) is a major dryland wheat production region of South Africa. Considerable variation in precipitation, soil types and average temperature occurs from east to west. The Free State is therefore commonly divided into four distinct dryland wheat production regions, namely: South Western Free State, North Western Free State, Central Free State and Eastern Free State.

Rainfall, particularly the distribution thereof through the growing season, is important for successful wheat production in the summer rainfall areas. Planting dates vary from early to late according to region and commences in May and continues until July. Harvesting takes place from December to January.

Good rains occurred in the fallow period during January and February in all regions. During January the rainfall was close to the long-term average, in February the precipitation was however almost three times more than the average figures. In the months leading up to planting time, only 50% of the long-term average was recorded in all regions. This lead to sub-optimum conditions during planting time and the early stages of development, unless soil moisture conservation practices was at an optimum level. From the last week of September into the first ten days of October a fair amount of rainfall was recorded in the Eastern and the North Western Free State. In the Central Free State, however, the first significant rain only occurred in November.

The average hectolitre mass was 79.9 kg/hl, 0.5 kg/hl higher than in 2016/2017. The thousand kernel mass (37.9 g) was 2.5 g higher than the previous season. The average percentage screenings was 1.48%, similar to the national average. The average whole wheat protein content decreased from 14.3% the previous season to 12.6% (12% mb) this season. The falling number of 338 seconds, although the lowest average of the three areas, is already within the higher range of acceptable falling number values.

The mixogram (Quadromat Junior) peak time was 2.9 minutes compared to the mostly above 3.0 minute averages of the previous seasons. The average Bühler extraction percentage in the Free State was equal to the previous season's 73.6%. The Kent Jones flour colour was -4.1 KJ units and the L* value 93.69, indicating a slightly whiter and brighter flour than last season. The average ash content was 0.61% and the average flour protein content 10.9%. The wet gluten content (14% mb) was 29.9% and the dry gluten 10.0%, a decrease of 8.2% and 3.2% respectively compared to the previous season, which is understandable given the 2.8% decrease in flour protein content. The gluten index averaged 94.

The average farinogram water absorption of 59.8% was lower than the previous season's 62.7% and also the lowest of the three areas. The development time averaged 5.0 and the stability 7.2 minutes, both shorter than in 2016/2017. The average alveogram strength of 35.6 cm² and extensogram strength of 96 cm² were both also noticeably lower than in the previous season. These observations can be expected taking the lower protein content, compared to last season, into account. The Bühler milled flour had an average mixograph peak time of 2.8 minutes. The 100-gram baking test showed that the relationship between protein content and bread volume was excellent between the different grades. Based on the average number values, the Free State wheat had the weakest rheological (dough) quality.

IRRIGATION AREAS (Northern Cape, North West, Mpumalanga, Gauteng, Limpopo and KwaZulu-Natal)

Generally, the irrigation wheat production areas of South Africa can be divided into four main geographic regions – the Cooler Central irrigation region in the Northern Cape, the Warmer Northern irrigation region in the North West, Limpopo and Gauteng provinces, the Highveld region in Mpumalanga and the Free State, and lastly, the KwaZulu-Natal region.

Planting commences as early as the end of May and continues until the end of July. Harvesting takes place from October to December.

Temperature conditions during this season showed slight deviations to the long-term average in all the production regions. Minimum temperatures in the KwaZulu-Natal and Cooler Irrigation regions were below normal during July and August, which could explain the higher yields obtained in these regions. In the Highveld region minimum temperatures were very close to the long-term average. In the Warmer Irrigation region, the minimum temperatures were slightly higher than the long-term average.

The irrigation wheat had the highest weighted average hectolitre mass of 83.2 kg/hl, as in the previous season. The thousand kernel mass increased by 1.4 g to 39.6 g. The average falling number was 385 seconds (the highest of the three areas). The screenings averaged 1.05%, the lowest of the three areas.

The whole wheat protein content was on average 11.9%, the lowest average content of the three areas. The flour's protein content of 11.0%, was equal to the previous season. The mixogram (Quadromat Junior) peak time averaged 2.8 minutes. The average Bühler extraction was 74.0%, slightly higher than last season and again also the highest of the three production areas.

The dry colour L* value was 93.83 and the Kent Jones wet colour value -4.3 KJ units. The ash content averaged 0.61%. The wet and dry gluten contents were 29.8% and 10.0% respectively and the gluten index 93. The average farinogram water absorption was 60.1% (58.9% during the previous season), the development time 5.6 minutes and the stability 7.5 minutes.

Alveogram strength averaged 38.9 cm^2 and the P/L $0.80 (37.1 \text{ cm}^2 \text{ and } 0.49 \text{ respectively the previous season})$. Higher P/L values are indicative of dough being less extensible (having shorter L values) than dough with higher P/L values and therefore also more elastic. A P/L value of 0.80 is very well situated within the general acceptable range of P/L values for bread baking purposes. The average extensogram strength was 106 cm^2 . The mixogram peak time averaged 2.8 minutes. The relationship between protein content and 100 g bread volume was also shown to be excellent.

Production area and climatic condition information were kindly provided by ARC-Small Grain.

Please see the results provided per individual production region on pages 34 to 61.

		ter rai area stern (and	mer ra Irriga area ree Sta	tion	Ir	rigatio areas	on	:	RSA averag	
Number of samples per area		151	·		41			112			304	
Regions		1 - 6			21 - 28	3		11, 12 34, 35			All	
Hectolitre mass dirty, kg/hl		79.1			79.9			83.2			80.7	
1000 kernel mass (13% mb), g		36.2			37.9			39.6	2		37.7	
Falling number, sec		370			338			385			371	
Screenings (1.8 mm sieve), %		1.79			1.48			1.05			1.51	
Protein (12% mb), % (ww)		13.2			12.6			11.9			12.6	
Mixogram peak time, min (Quadromat Junior)		2.6			2.9			2.8			2.7	
Composite samples per class and grade	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW
Composite samples, n = 70	5 3	4	3 2	7	5	2	13 3	10 1	4	25 7	19 8	9 2
Bühler extraction, %			72.4 71.2		74.2 71.4	75.2		74.4 74.1	73.7		73.6 71.6	73.6 71.2
Flour colour, KJ (wet)	-4.0	-3.8	-3.8	-3.8		-4.2	-4.3	-4.3	-4.5	-4.1	-4.2	-4.2
Colour, Konica Minolta CM5 (dry)	R.								93 95			93.85
L*			93.59				2	93.99				93.59
b*			10.12 9.78		9.44 10.25	-		9.68 10.04			9.79 10.25	
Ash (db), %		0.59 0.59			0.62 0.60	0.60		0.61 0.63	0.64		0.61 0.60	
Flour protein (12% mb), %		12.8 12.0	11.4	12.0 8.1	10.4 11.1	9.4		10.7 10.6	9.7		11.1 11.7	

Table 5: Regional quality weighted averages

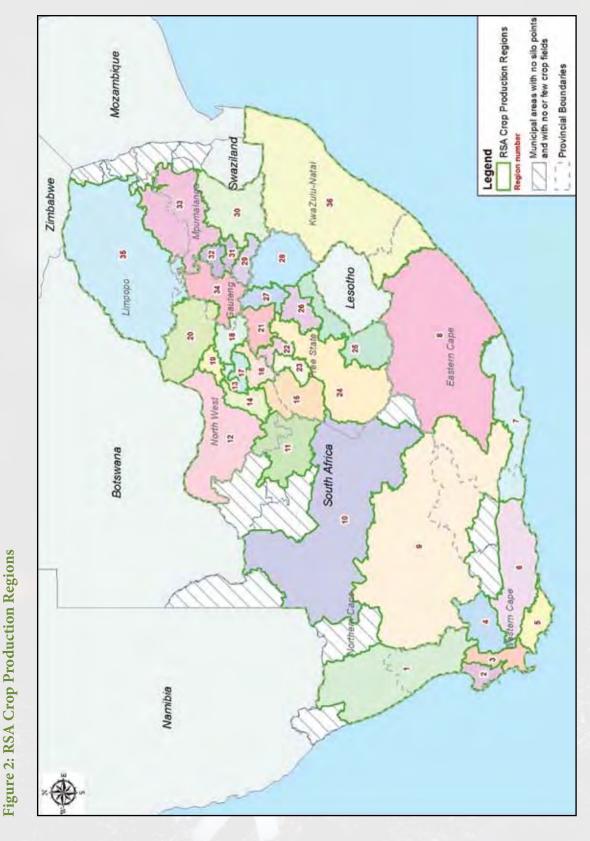
Table 5: Regional quality weighted averages (continue)

		ter rai area stern (and	mer ra Irriga area ree Sta	ition	Ir	rigati areas		1	RSA averag	
Regions		1 - 6			21 - 28	3		11, 12 34, 35			All	
Composite samples per class and grade	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW	B1 B4	B2 UT	B3 COW
Composite samples, n = 70	5	4	3	7	5	2	13	10	4	25	19	9
	3	6	2	1	1	-	3	1	-	7	8	2
Wet gluten (14% mb), %	33.7 30.1	35.0 32.1	30.7 31.6	33.421.4	29.0 30.0	- 24.4	32.0 25.0	29.6 30.8	26.6	32.7 26.7	30.6 31.7	27.5 31.6
	11.6	12.1	10.4	11.2	9.6	8.3	10.9	9.9	8.7	11.1	10.3	9.2
Dry gluten (14% mb), %	10.2	11.1	10.9	7.0	10.1	-	8.4	10.1	_	9.0	10.8	10.9
	94	93	94	92	96	99	94	91	93	93	93	94
Gluten Index	93	94	90	97	92	-	95	83	-	94	92	90
Farinogram:	60.9	61.8	60.6	60.8	59.2	59.5	61.0	59.9	58.7	60.9	60.1	59.5
Water absorption (14% mb), %	60.1	60.9	60.4	56.0	60.7	-	58.4	60.7	-	58.8	60.9	60.4
Farinogram:	6.0	6.5	5.2	5.6	4.9	3.5	6.8	4.9	4.1	6.3	5.2	4.3
Development time, min	5.0	5.6	5.2	3.2	5.2	-	4.8	4.3	-	4.7	5.4	5.2
Farinogram:	9.8	10.9	8.2	7.7	6.0	8.4	9.3	6.1	5.8	9.0	7.1	7.2
Stability, min	9.1	9.7	7.2	6.2	7.3	-	7.0	5.4	-	7.8	8.8	7.2
Alveogram:	46.1	39.0	38.9	40.7	33.4	31.4	46.1	34.4	31.7	44.6	36.1	34.0
Strength (S), cm ²	40.1	42.9	36.1	18.8	35.3	-	34.3	31.8	-	34.6	40.6	36.1
Alveogram: P/L	0.59	0.73	0.77	0.69	0.71	2.73	0.79	0.79	0.80	0.72	0.75	1.22
Aiveogrami, F/L	0.75	0.74	0.69	0.90	1.14	-	0.84	0.85	-	0.81	0.80	0.69
Extensogram:	127	119	97	106	89	91	126	97	82	121	100	89
Strength, cm ²	98	116	95	62	93	-	88	82	-	89	109	95
Mixogram peak time, min	2.4	2.4	2.3	2.6	2.7	3.2	3.0	2.6	2.8	2.8	2.6	2.7
Transfrom been mine, min	2.5	2.3	2.5	3.2	2.9	-	2.9	2.3	-	2.7	2.4	2.5
Relationship between protein	EX	EX	EX	EX	EX	EX	EX	EX	EX	EX	EX	EX
and bread volume	EX	EX	EX	EX	EX	-	EX	EX	-	EX	EX	EX

EX = Excellent

RSA Production Regions

The RSA is divided into 9 provinces as illustrated in Figure 1.


Provincial map with gratitude to SiQ.

The 9 provinces are divided into 36 grain production regions.

The regions are distributed as follows: Region 1: Namakwaland Regions 2 and 3: Swartland Regions 4 to 6: Rûens Regions 7 and 8: Eastern Cape Region 9: Karoo Region 10: Griqualand West Region 11: Vaalharts Regions 12 to 20: North West Regions 21 to 28: Free State Regions 29 to 33: Mpumalanga Region 34: Gauteng Region 35: Limpopo Region 36: KwaZulu-Natal

Please see the Crop Production Regions map on the next page.

The production regions from which wheat samples were received for the crop quality survey of the 2017/2018 production season, are named and described on pages 30 to 33. All the silo/intake stands as well as the type of storage structure, situated in a particular region, are provided.

Regional map with gratitude to Agbiz Grain and SiQ.

Grain Production Regions

Silo/Intake stands per region indicating type of storage structure

	Region 1: N	amakwaland Region	
Kaap Agri	Graafwater (Bags/Bins)		
	Deview & Owe		
		rtland Western Regio	
Kaap Agri	Darling (Bins)	Overberg Agri	Bergrivier (Bins)
Kaap Agri	Vredenburg (Bins)	Overberg Agri	Koperfontein (Bins)
	Region 3: Swa	artland Central Regior	1
Kaap Agri	Eendekuil <i>(Bins)</i>	Overberg Agri	Moravia <i>(Bins)</i>
Kaap Agri	Klipheuwel <i>(Bins)</i>	Afgri	Eensgezind (Bunkers)
Kaap Agri	Malmesbury (Bins)	Afgri	Klipfontein (Bunkers)
Kaap Agri	Piketberg (Bins)	Afgri	Malandam <i>(Bunkers)</i>
Kaap Agri	Pools (Bins)	BKB Grainco	Pampoen-kraal <i>(Bunkers)</i>
Kaap Agri	Ruststasie (Bins)	BKB Grainco	Eenboom (Bunkers)
Overberg Agri	Koringberg <i>(Bins)</i>	BKB Grainco	Melkboom <i>(Bunkers)</i>
Overberg Agri	Moorreesburg (Bins)		
	Region 4: Swa	artland Eastern Regio	n
Kaap Agri	Ceres (Bunkers)	Kaap Agri	Porterville (Bins)
Kaap Agri	Ceres (Bins)	Kaap Agri	Riebeeck-Wes (Bins)
Kaap Agri	Gouda (Bins)	Overberg Agri	Leliedam (Bins)
Kaap Agri	Halfmanshof (Bins)	BKB Grainco	Winterhoek (Bunkers)
(dup / ign			Winternook (Burnero)
	Region 5: Rí	iens Western Region	
Overberg Agri	Bredasdorp (Bags/Bins/Bunkers)	Overberg Agri	Napier (Bags/Bins)
Overberg Agri	Caledon (Bins/Bunkers)	Overberg Agri	Ou Plaas <i>(Bunkers)</i>
Overberg Agri	Klipdale <i>(Bags/Bins)</i>	Overberg Agri	Protem (Bags/Bins)
Overberg Agri	Krige (Bags/Bins/Bunkers)	Overberg Agri	Rietpoel (Bags/Bins/Bunkers)
Overberg Agri	Lemoenskop (Bunkers)		
	Region 6: Rí	ûens Eastern Region	
SSK	Albertinia <i>(Bins)</i>	SSK	Krombeks (Bins)
SSK	Ashton (Bags/Bins)	SSK	Protem (Bags/Bins)
SSK	Heidelberg (Bins)	SSK	Riversdal <i>(Bins)</i>
SSK	Herold (Bins)	SSK	Swellendam (Bags/Bins)
SSK	Karringmelk (Bags/Bins)		
	Region 10: Gr	iqualand West Regior	
GWK	Douglas (Bags/Bins)	GWK	Trans Oranje (Bags/Bins/Bunkers)
GWK	Luckhoff (Bins)	OVK	Havenga Brug (Bins)
GWK	Marydale (Bins)	OVK	Morgenzon (Bins)
GWK	Modderrivier (Bags/Bins/Bulk)	OVK	Oranjerivier (Bins/Bunkers)
GWK	Prieska (Bins/Dams)	OVK	Prieska (Bins/Bunkers)
GWK	Rietrivier (Bins)	OVK	Rietrivier (Bins)
	Region 11	: Vaalharts Region	
GWK	Barkly-Wes (Bins/Bulk)	Senwes	Jan Kempdorp <i>(Bins)</i>
GWK	Jan Kempdorp (Bags/Bunkers)	Senwes	Magogong (Bins)

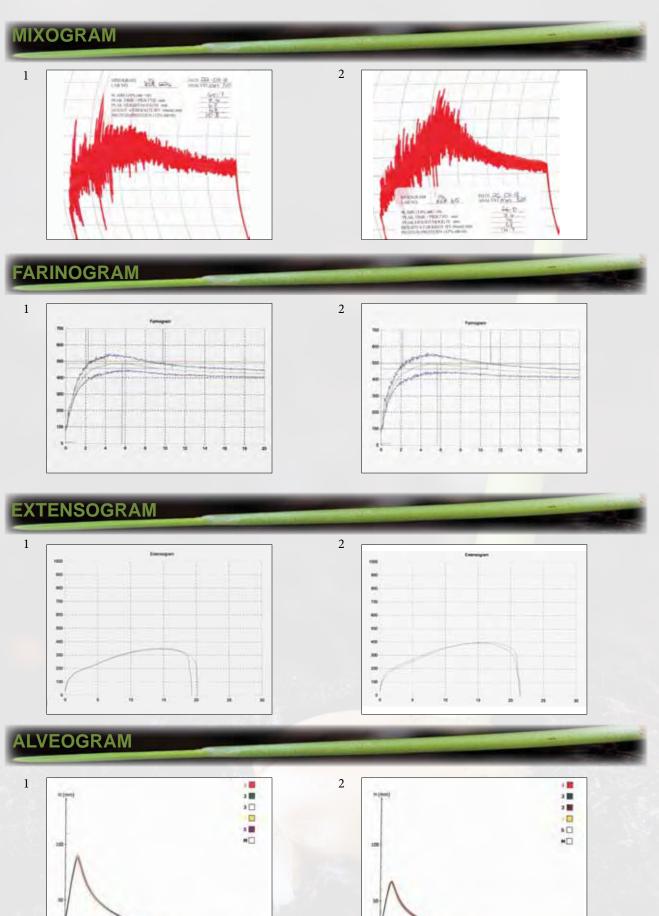
Grain Production Regions

Silo/Intake stands per region indicating type of storage structure

	Region 12: Noi	rth West Western Region	n
NWK	Blaauwbank <i>(Bins)</i>	NWK	Mareetsane (Bins)
NWK	Bührmannsdrif (Bins)	Suidwes Landbou	Kameel (Bins)
NWK	Kameel (Bins)	Vryburg <i>(Bins)</i>	
	Region 14: Nor	th West Southern Regio	n
NWK	Barberspan <i>(Bins)</i>	NWK	Taaibospan <i>(Bins)</i>
NWK	Delareyville (Bins)	Suidwes Landbou	Amalia (Bins)
NWK	Excelsior (Bins)	Suidwes Landbou	Hallatshope (Bins)
NWK	Geysdorp (Bins)	Suidwes Landbou	Migdol (Bins)
NWK	Migdol (Bins)	Suidwes Landbou	Schweizer-Reneke (Bins)
NWK	Nooitgedacht (Bins)		
	Region 15: North	West South-Eastern Reg	aion
Suidwes Landbou	Bloemhof (Bins)	Suidwes Landbou	Kingswood (Bins)
Suidwes Landbou	Christiana (Bins)	Suidwes Landbou	Kruising (Bunkers)
Suidwes Landbou	Hertzogville (Bins)	Suidwes Landbou	Poppieland (Bunkers)
Suidwes Landbou	Hoopstad (Bins)		
		Nest Central-Eastern Re	
Senwes	Regina (Bins)	Suidwes Landbou	Makwassie (Bins)
Suidwes Landbou	Bamboesspruit (Bins)	Suidwes Landbou	Strydpoort (Bins)
Suidwes Landbou	Leeudoringstad (Bins)	Suidwes Landbou	Wolmaranstad (Bins)
	Region 17: North West C		
	Boschpoort (Bags/Bins/Bulk)	NWK	Vermaas (Bins)
NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins)	NWK Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i>
NWK NWK	Boschpoort <i>(Bags/Bins/Bulk)</i> Kleinharts <i>(Bins)</i> Ottosdal <i>(Bins)</i>	NWK Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i>
NWK NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins)	NWK Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i>
NWK NWK	Boschpoort <i>(Bags/Bins/Bulk)</i> Kleinharts <i>(Bins)</i> Ottosdal <i>(Bins)</i> Rostrataville <i>(Bins)</i>	NWK Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i>
NWK NWK NWK	Boschpoort <i>(Bags/Bins/Bulk)</i> Kleinharts <i>(Bins)</i> Ottosdal <i>(Bins)</i> Rostrataville <i>(Bins)</i>	NWK Senwes Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i>
NWK NWK NWK NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Region 18: North Wes	NWK Senwes Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i> rsdorp)
NWK NWK NWK NWK	Boschpoort (<i>Bags/Bins/Bulk</i>) Kleinharts (<i>Bins</i>) Ottosdal (<i>Bins</i>) Rostrataville (<i>Bins</i>) Region 18: North Wes Bodenstein (<i>Bins</i>)	NWK Senwes Senwes Senwes st Central Region (Vente Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i> rsdorp) Makokskraal <i>(Bins)</i>
NWK NWK NWK NWK Senwes	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Region 18: North Wes Bodenstein (Bins) Coligny (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i> rsdorp) Makokskraal <i>(Bins)</i> Potchefstroom <i>(Bins)</i>
NWK NWK NWK NWK Senwes	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Region 18: North Wes Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i> rsdorp) Makokskraal <i>(Bins)</i> Potchefstroom <i>(Bins)</i> Ventersdorp <i>(Bins)</i>
NWK NWK NWK NWK Senwes Senwes	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Region 18: North Wes Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas <i>(Bins)</i> Hartbeesfontein <i>(Bins)</i> Melliodora <i>(Bins)</i> Werda <i>(Bins)</i> rsdorp) Makokskraal <i>(Bins)</i> Potchefstroom <i>(Bins)</i> Ventersdorp <i>(Bins)</i>
NWK NWK NWK NWK Senwes Senwes	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Rostrataville (Bins) Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins)
NWK NWK NWK NWK Senwes Senwes Afgri NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Region 18: North Wes Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Enselspruit (Bins) Lichtenburg (Bunkers)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins) Ventersdorp (Bins)
NWK NWK NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Rostrataville (Bins) Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Enselspruit (Bins) Kegion 19: North West Lichtenburg (Bunkers) Grootpan (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins) Ventersdorp (Bins) Lottie Halte (Bins) Lusthof (Bins)
NWK NWK NWK NWK Senwes Senwes Afgri NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Rostrataville (Bins) Coligny (Bins) Buckingham (Bins) Enselspruit (Bins) Enselspruit (Bins) Enselspruit (Bins) Halfpad (Bins) Halfpad (Bins) Hibernia (Bins)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom (Bins) Ventersdorp (Bins) Ventersdorp (Bins) Lusthof (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK NWK NWK Senwes Senwes Senwes Afgri NWK NWK	Boschpoort (<i>Bags/Bins/Bulk</i>) Kleinharts (<i>Bins</i>) Ottosdal (<i>Bins</i>) Rostrataville (<i>Bins</i>) Rostrataville (<i>Bins</i>) Coligny (<i>Bins</i>) Buckingham (<i>Bins</i>) Enselspruit (<i>Bins</i>) Enselspruit (<i>Bins</i>) Lichtenburg (<i>Bunkers</i>) Grootpan (<i>Bins</i>) Halfpad (<i>Bins</i>) Halfpad (<i>Bins</i>) Hibernia (<i>Bins</i>)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes st Central Region (Lichte NWK NWK NWK NWK NWK	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins) Ventersdorp (Bins) Lusthof (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK NWK NWK Senwes Senwes Senwes Afgri NWK NWK NWK	Boschpoort (Bags/Bins/Bulk) Kleinharts (Bins) Ottosdal (Bins) Rostrataville (Bins) Rostrataville (Bins) Coligny (Bins) Bodenstein (Bins) Coligny (Bins) Buckingham (Bins) Buckingham (Bins) Enselspruit (Bins) Enselspruit (Bins) Hibernia (Bins) Halfpad (Bins) Hibernia (Bins) Hibernia (Bins)	NWK Senwes Senwe	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins) Ventersdorp (Bins) Lusthof (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)
NWK NWK NWK NWK Senwes Senwes Senwes Afgri NWK NWK	Boschpoort (<i>Bags/Bins/Bulk</i>) Kleinharts (<i>Bins</i>) Ottosdal (<i>Bins</i>) Rostrataville (<i>Bins</i>) Rostrataville (<i>Bins</i>) Coligny (<i>Bins</i>) Buckingham (<i>Bins</i>) Enselspruit (<i>Bins</i>) Enselspruit (<i>Bins</i>) Lichtenburg (<i>Bunkers</i>) Grootpan (<i>Bins</i>) Halfpad (<i>Bins</i>) Halfpad (<i>Bins</i>) Hibernia (<i>Bins</i>)	NWK Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes Senwes st Central Region (Lichte NWK NWK NWK NWK NWK	Vermaas (Bins) Hartbeesfontein (Bins) Melliodora (Bins) Werda (Bins) rsdorp) Makokskraal (Bins) Potchefstroom(Bins) Ventersdorp (Bins) Ventersdorp (Bins) Lusthof (Bins) Lusthof (Bins) Lichtenburg Silo 3 (Bins) Lichtenburg Silo 5 (Bins)

Grain Production Regions

Silo/Intake stands per region indicating type of storage structure

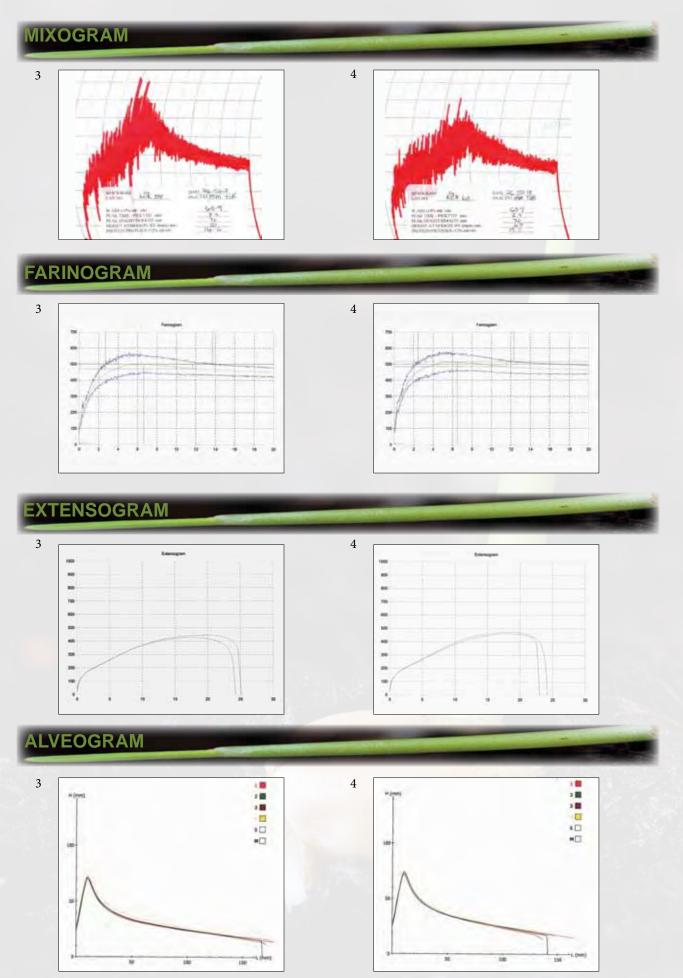

	Region 21: Free State No	rth-western Region (VII)	oenskroon)
Senwes	Attie (Bins)	Senwes	Vierfontein (Bins)
Senwes	Groenebloem (Bins)	Senwes	Viljoenskroon <i>(Bins)</i>
Senwes	Heuningspruit (Bins)	Senwes	Vredefort (Bins)
Senwes	Koppies (Bins)	Senwes	Weiveld (Bins)
Senwes	Rooiwal <i>(Bins)</i>		
	Region 22: Free State N	lorth-Western Region (B	Sothaville)
Senwes	Allanrigde (Bins)	Senwes	Schoonspruit (Bins)
Senwes	Bothaville (Bins)	Senwes	Schuttesdraai <i>(Bins)</i>
Senwes	Mirage (Bins)	Suidwes Landbou	Misgunst (Bunkers)
Senwes	Odendaalsrus (Bins)		
	Region 23: Free State N	orth-Western Region (B	ultfontein)
Senwes	Bultfontein (Bins)	Senwes	Tierfontein (Bins)
Senwes	Losdoorns (Bins)	Senwes	Wesselsbron <i>(Bins)</i>
Senwes	Protespan <i>(Bins)</i>	Senwes	Willemsrus <i>(Bins)</i>
	Region 24: Fr	ee State Central Region	
Senwes	Bloemfontein (Bins)	Senwes	Petrusburg (Bins)
Senwes	Brandfort (Bins)	Senwes	Theunissen <i>(Bins)</i>
Senwes	De Brug <i>(Bins)</i>	Senwes	Van Tonder <i>(Bins)</i>
Senwes	Geneva (Bins)	Senwes	Welgeleë <i>(Bins)</i>
Senwes	Hennenman <i>(Bins)</i>	Senwes	Winburg (Bins)
Senwes	Kroonstad (Bins)		
	Region 26: Free S	State South-Eastern Reg	jion
Afgri	Kaallaagte (Bins)	Afgri	Monte Video (Bins)
Afgri	Libertas (Bins)	Afgri	Senekal <i>(Bins)</i>
Afgri	Marquard (Bins)	Senwes	Arlington (Bins)
Afgri	Meets (Bins)	Senwes	Steynsrus (Bins)
_	Region 27: Fre	e State Northern Regior	
Senwes	Gottenburg (Bins)	Senwes	Mooigeleë (Bins)
Senwes	Heilbron <i>(Bins)</i>	Senwes	Wolwehoek (Bins)
Senwes	Hoogte (Bins)	VKB	Petrus Steyn (Bins)
Afari		ee State Eastern Region	
Afgri	Afrikaskop (Bins/Bunkers)	VKB	Jim Fouché (Bins)
Afgri	Eeram (Bins)	VKB	Memel (Bins)
Afgri	Harrismith (Bins)	VKB	Reitz (Bins)
Afgri	Kransfontein (<i>Bins/Bunkers</i>)	VKB	Tweeling (Bins)
VKB	Ascent (Bins)	VKB	Villiers (Bins/Bulk)
VKB	Cornelia (Bins)	VKB	Vrede (Bins)
VKB	Daniëlsrus <i>(Bins)</i>	VKB	Warden (Bins)
VKB	Frankfort (Bins)	VKB	Windfield (Bins)

Grain Production Regions

Silo/Intake stands per region indicating type of storage structure

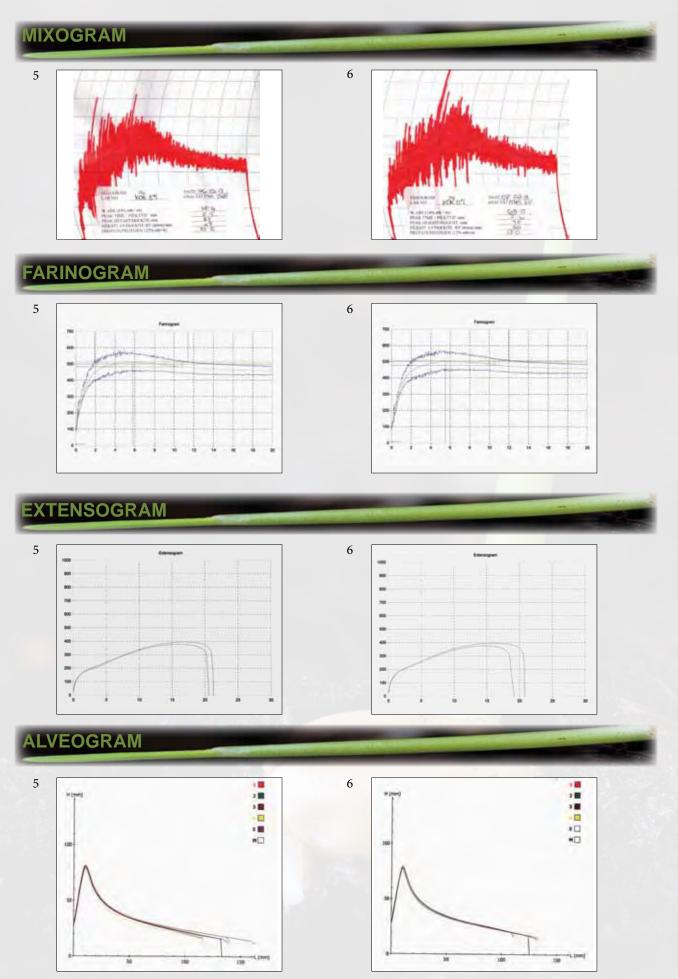
	Region 33: Mpuma	langa Northern R	egion
Afgri	Arnot (Bins)	Afgri	Middelburg (Bins)
Afgri	Driefontein (Bins)	Afgri	Pan <i>(Bins)</i>
Afgri	Lydenburg (Bins)	Afgri	Stoffberg (Bins)
Afgri	Marble Hall (Bins)	Afgri	Wonderfontein (Bins)
	Region 34: C	Gauteng Region	
Afgri	Bloekomspruit (Bins)	Afgri	Nigel (Bins)
Afgri	Bronkhorstspruit (Bins)	Afgri	Pretoria Wes (Bins)
Afgri	Glenroy (Bins)	Afgri	Vogelvallei (Bunkers)
Afgri	Goeie Hoek (Bins)	Senwes	Middelvlei (Bins)
Afgri	Kaalfontein (Bins)	Senwes	Oberholzer (Bins)
Afgri	Kliprivier (Bunkers)	Senwes	Raathsvlei <i>(Bins)</i>
Afgri	Meyerton (Bunkers)		
	Region 35: L	impopo Region.	
Afgri	Northam (Bins)	NTK	Nylstroom (Modimolle) (Bins)
NTK	Alma <i>(Bins)</i>	NTK	Potgietersrus (Mokopane) (Bins)
NTK	Lehau <i>(Bins)</i>	NTK	Roedtan <i>(Bins)</i>
NTK	Naboomspruit (Mookgophong) (Bins)	NTK	Settlers (Bins)
NTK	Nutfield (Bins)	NTK	Warmbad (Bela-Bela) (Bins)
	Region 36: Kwa	aZulu-Natal Regio	on
Afgri	Bergville (Bins/Bunkers)	Afgri	Paulpietersburg (Bins)
Afgri	Bloedrivier (Bins)	Afgri	Pietermaritzburg (Bins)
Afgri	Dannhauser (Bins)	Afgri	Vryheid <i>(Bins)</i>
Afgri	Dundee (Bins)	Afgri	Winterton (Bins/Bunkers)
Afgri	Mizpah <i>(Bins)</i>		

PRODUCTION REGION	(1)	kwalan	d Regic	'n			(2) Swartl Weste	and rn Regi	on			
WHEAT												
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), % Falling number, sec	12.5		11.8 355	<u>13.5</u> 441		0.91 44.68	14.3 343		12.5 187	15.9 388		0.93 51.66
1000 Kernel mass (13% mb), g	38.8		36.8	441		2.65	343		22.0	36.7		3.79
Hectolitre mass (dirty), kg/hl	76.3		75.0	77.6		1.30	75.9		72.7	79.5		2.04
Screenings (<1.8 mm sieve), %	4.77		4.25	5.50		0.65	3.34		1.68	5.14		1.21
Total damaged kernels, %	4.55	5	3.30	6.64		1.82	2.20)	0.76	7.92	2	1.86
Combined deviations, %	10.08	8	8.25	12.98	3	2.54	6.40)	3.48	13.5	5	2.71
Number of samples				3						13		
CULTIVARS		SS	T 015	33	3.7			SST	056	3	0.2	
cultivars		SS	T 056	27	7.3			SST	087	2	9.5	
with highest %		SS	T 087	17	' .0			SST	88	2	1.8	
occurrence			T 88		6.0				015		0.1	
Number of complex		SS	Т 047		.0			SST	0127		8.0	
Number of samples				3						13		
MIXOGRAM (Quadromat Junior)	ave		min	max	: :	stdev	ave		min	max		stdev
Peak time, min Tail height (6 min), mm	2.5		2.3 46	2.8		0.26	2.6		2.3 43	3.0 52		0.20
Number of samples	40			3		1.55	43			13	-	2.01
				-	СО	MPOSIT	E SAMP	LES				
CLASS AND GRADE	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	-	-	-	-	71.6	71.7	72.0	71.1	-	-	70.8	70.7
FLOUR												
Protein (12% mb), %		_		_	12.0	10.5	12.6	15.0		_	13.7	13.4
Ash (db), %		-	-	-	0.66	0.68	0.56	0.58	-	-	0.58	0.62
Colour, KJ (wet)		-	-	-	-4.0	-3.7	-3.9	-3.7	-	-	-3.5	-3.2
Colour, Konica Minolta CM5 (dry)												
<u>L*</u>	-	-	-	-	94.03	93.70	93.62	93.44	-	-	93.64	93.48
<u>a*</u>	-	-	-	-	0.36	0.30	0.44	0.40	-	-	0.36	0.31
<u>b*</u>		-	-	-	9.52	9.86	11.24	11.12	-	-	10.25	9.69
RVA												
Peak Viscosity, cP	-	-	-	-	2270	2400	2297	2096	-	-	2154	2377
Minimum viscosity (Through), cP	-	-	-	-	1478	1676	1581	1490	-	-	1684	1656
Final Viscosity, cP		-	-	-	2574	2731	2697	2343	-	-	2355	2704
Peak Time, min	-	-	-	-	7.00	7.00	7.00	7.00	-	-	7.00	7.00
GLUTEN												
Wet gluten (14% mb), %	-	-	-	-	32.5	27.8	34.2	39.9		-	36.7	35.4
Dry gluten (14% mb), %	-	-	-	-	11.4	9.4	11.9	13.9	-	-	12.7	12.4
Gluten Index	-	-	-	-	94	87	92	89	-	-	93	93
FARINOGRAM												
Water absorption (14% mb), %	-	-	-	-	62.5	59.4	60.2	62.9	-	-	60.7	61.3
Development time, min	-	-		-	5.7	4.2	5.7	7.3	-	-	6.0	6.2
Stability, min	-	-		-	7.5	5.2	8.9	9.5	-	-	10.0	9.2
Mixing tolerance index, BU		-	-	-	38	53	29	28	-	-	29	31
EXTENSOGRAM (45 min pull)				195				-				
Area, cm ²	-	-		-	97	72	119	131	-	-	141	117
Maximum height, BU Extensibility, mm		-	-	-	347 199	291 169	394 216	391 241	-	-	410 246	365 231
	-		1		199	109	210	241	-	-	240	231
ALVEOGRAM Strength (S), cm ²	_	N	-	-	38.8	31.0	39.8	44.0	-	-	49.4	41.1
Stability (P), mm		-		-	96	84	73	84	-	-	75	73
Distensibility (L), mm		· ·	-	-	94	93	149	122	-		181	152
Configuration ratio (P/L)	-	-	-	-	1.02	0.90	0.49	0.69	-	-	0.41	0.48
MIXOGRAM Peak time, min					2.1	2.5	2.4	2.3			2.4	2.4
100g BAKING TEST												
Loaf volume, cm ³	-	-	-	-	1096	981	1177	1209	-	-	1243	1184
Evaluation (see page 77)	-	-	-	-	0	0	0	0	-	-	0	0

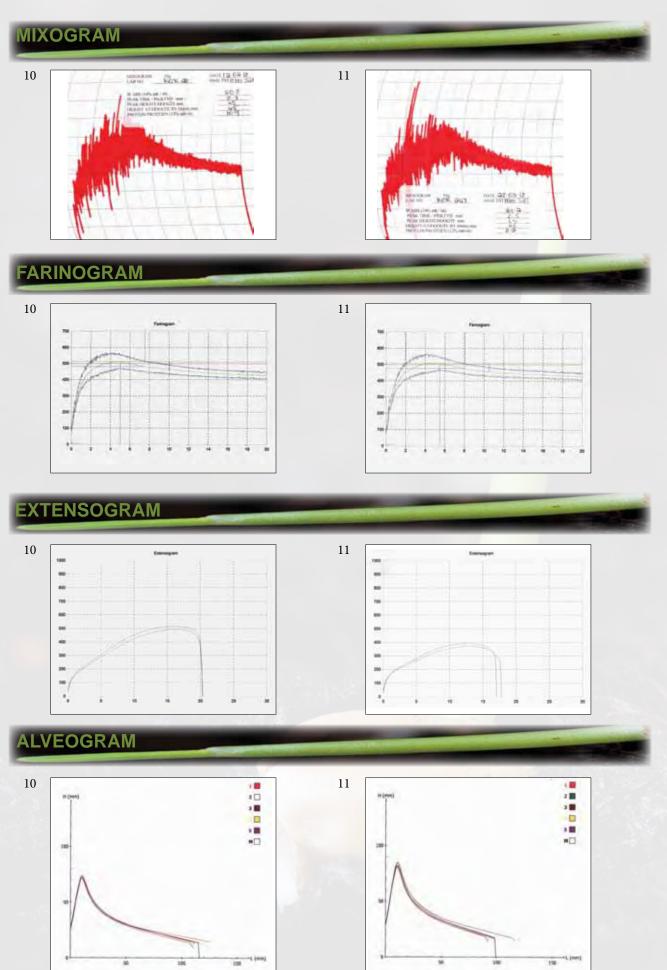


35

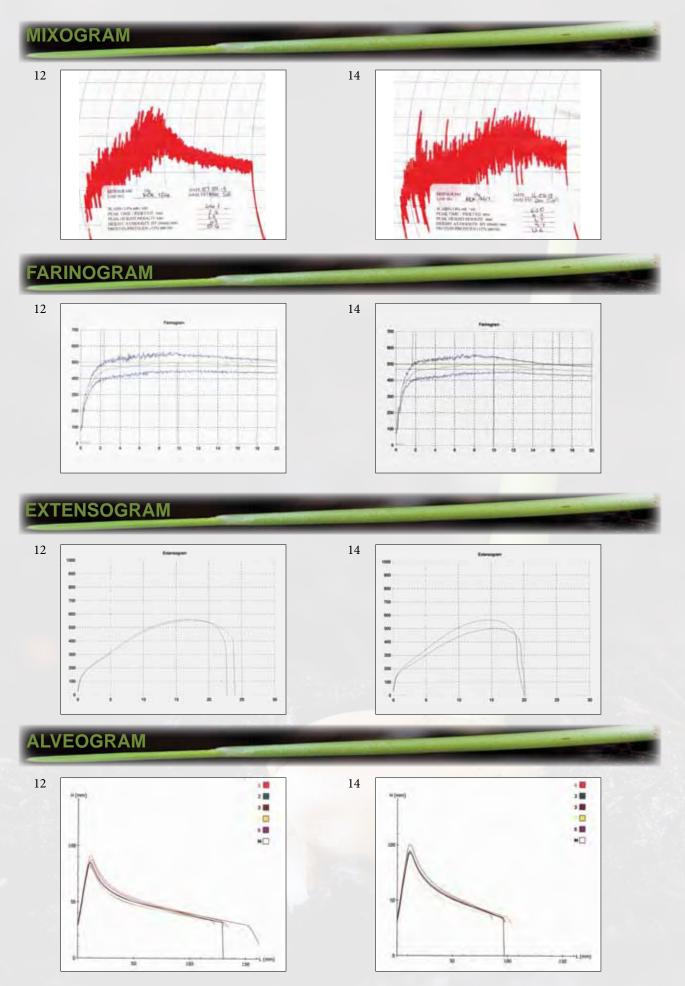
-1, 20081


1240

WHEAT ave min max stdev ave min Protein (12% mb), % 14.6 9.6 16.5 1.20 13.1 10.9 Falling number, sec 392 300 509 36.15 373 291 1000 Kernel mass (13% mb), g 33.1 29.5 38.4 1.85 34.9 31.6 Hectolitre mass (dity), kg/hl 78.1 73.9 81.7 1.67 79.7 77.5 Screenings (<1.8 mm sieve), % 2.12 0.30 3.70 0.76 2.06 0.10 Total damaged kernels, % 1.17 0.18 2.58 0.53 0.88 0.48 Combined deviations, % 3.92 1.32 5.40 1.04 3.81 2.29	ma 14. 427 40. 81. 3.33 1.80 5.2 17	1 7 6 0	stdev 0.95 33.69
Protein (12% mb), % 14.6 9.6 16.5 1.20 13.1 10.9 Falling number, sec 392 300 509 36.15 373 291 1000 Kernel mass (13% mb), g 33.1 29.5 38.4 1.85 34.9 31.6 Hectolitre mass (dirty), kg/hl 78.1 73.9 81.7 1.67 79.7 77.5 Screenings (<1.8 mm sieve), % 2.12 0.30 3.70 0.76 2.06 0.10 Total damaged kernels, % 1.17 0.18 2.58 0.53 0.88 0.48	14. 427 40. 81. 3.3 1.8 5.2	1 7 6 0	0.95 33.69
Falling number, sec 392 300 509 36.15 373 291 1000 Kernel mass (13% mb), g 33.1 29.5 38.4 1.85 34.9 31.6 Hectolitre mass (dirty), kg/hl 78.1 73.9 81.7 1.67 79.7 77.5 Screenings (<1.8 mm sieve), %	427 40.1 81.1 3.33 1.80 5.2	7 6 0	33.69
1000 Kernel mass (13% mb), g 33.1 29.5 38.4 1.85 34.9 31.6 Hectolitre mass (dirty), kg/hl 78.1 73.9 81.7 1.67 79.7 77.5 Screenings (<1.8 mm sieve), %	40. 81. 3.3 1.8 5.2	6 0	
Hectolitre mass (dirty), kg/hl 78.1 73.9 81.7 1.67 79.7 77.5 Screenings (<1.8 mm sieve), %	81.0 3.33 1.80 5.2	0	
Screenings (<1.8 mm sieve), % 2.12 0.30 3.70 0.76 2.06 0.10 Total damaged kernels, % 1.17 0.18 2.58 0.53 0.88 0.48	3.3 1.8 5.2		2.18
Total damaged kernels, % 1.17 0.18 2.58 0.53 0.88 0.48	1.8 5.2	3	1.11
	5.2	0	1.02
			0.31
Number of samples 52 52		/	0.99
CULTIVARS SST 056 32.0 SST 056	2	5.2	
cultivars SST 087 22.6 SST 087	2	2.3	
with highest % SST 88 21.8 SST 88	2	0.3	
occurrence SST 015 13.4 SST 015	1	8.4	
	1	3.5	
Number of samples 52	17		
MIXOGRAM (Quadromat Junior) ave min max stdev ave min	mai	x	stdev
Peak time, min 2.6 2.1 3.4 0.23 2.8 2.3	3.0)	0.19
Tail height (6 min), mm 51 42 56 2.96 49 44	52		2.34
Number of samples 52	17		
COMPOSITE SAMPLES	1 54		
CLASS AND GRADE B1 B2 B3 B4 UT COW B1 B2 B3	B4	UT	COW
Bühler Extraction, % 70.9 70.6 71.7 70.2 71.1 - 71.7 - -	72.0	71.7	-
FLOUR Image: Protein (12% mb), % 13.3 14.6 14.9 15.4 12.9 - 12.3 - -	9.7	107	
Protein (12% mb), % 13.3 14.6 14.9 15.4 12.9 - 12.3 - - Ash (db), % 0.60 0.57 0.49 0.55 0.58 - 0.56 - -	0.56	12.7 0.54	-
Ash (ub), % 0.00 0.37 0.49 0.35 0.36 - 0.30 - <th< td=""><td>-4.2</td><td>-4.3</td><td></td></th<>	-4.2	-4.3	
Colour, Konica Minolta CM5 (dry)	-4.2	-4.5	
L* 93.55 93.64 93.70 93.84 93.82 - 93.93	93.87	94.08	-
a* 0.50 0.42 0.43 0.41 0.40 - 0.36	0.32	0.36	-
b* 10.43 10.52 10.11 9.99 10.15 - 10.36	10.71	10.30	-
			1
RVA			
Peak Viscosity, cP 2241 2190 2215 2194 2352 - 2325 - -	2163	1987	-
Minimum viscosity (Through), cP 1650 1557 1519 1542 1721 - 1750	1672	1507	-
Final Viscosity, cP 2557 2438 2406 2479 2699 - 2682 - -	2546	2294	-
Peak Time, min 7.00 7.00 7.00 7.00 - 7.00 - <th<< td=""><td>7.00</td><td>7.00</td><td>-</td></th<<>	7.00	7.00	-
	04.0	007	
Wet gluten (14% mb), % 35.9 40.7 41.5 43.4 35.2 - 32.8 - - Dry gluten (14% mb), % 12.5 14.2 14.1 14.7 12.2 - 11.2 - - -	24.9	33.7	-
Dry gluten (14% mb), % 12.5 14.2 14.1 14.7 12.2 - 11.2 - - Gluten Index 94 96 92 92 95 - 97 - -	8.6 92	11.5 97	-
Gluten index 94 30 92 32 30 - 97	92	97	-
FARINOGRAM			
Water absorption (14% mb), % 61.4 62.5 63.2 62.9 61.1 - 60.7 -	60.1	60.9	-
Development time, min 6.7 8.2 7.7 8.0 6.9 - 6.5	4.2	6.5	-
Stability, min 11.0 16.3 12.8 16.6 12.8 - 9.8	6.5	13.0	-
Mixing tolerance index, BU 28 21 25 16 22 - 32	41	20	-
EXTENSOGRAM (45 min pull)			
Area, cm² 150 153 150 163 144 - -	75	151	-
Maximum height, BU 435 428 394 402 439 - 443	336	467	
Extensibility, mm 248 256 272 289 245 - 238	159	237	-
			34
		507	
Strength (S), cm ² 55.0 53.5 56.7 64.7 48.0 - 47.4 - - Stability (P), mm 85 84 80 82 81 - 80 - -	30.9	50.7	-
	90	79 168	-
Distensibility (L), mm 163 157 193 197 141 - 140 - - Configuration ratio (P/L) 0.52 0.54 0.41 0.42 0.57 - 0.57 - - -	1.18	0.47	-
USZ 0.34 0.41 0.42 0.57 - 0.57	1.10	0.47	-
MIXOGRAM			
Peak time, min 2.3 2.5 2.3 2.6 2.4 - 2.4	2.3	2.5	-
100g BAKING TEST			
Loaf volume, cm ³ 1200 1242 1319 1304 1235 - 1155	923	1212	-
Evaluation (see page 77) 00 0 0 0 - 0 - <td>0</td> <td>0</td> <td>-</td>	0	0	-

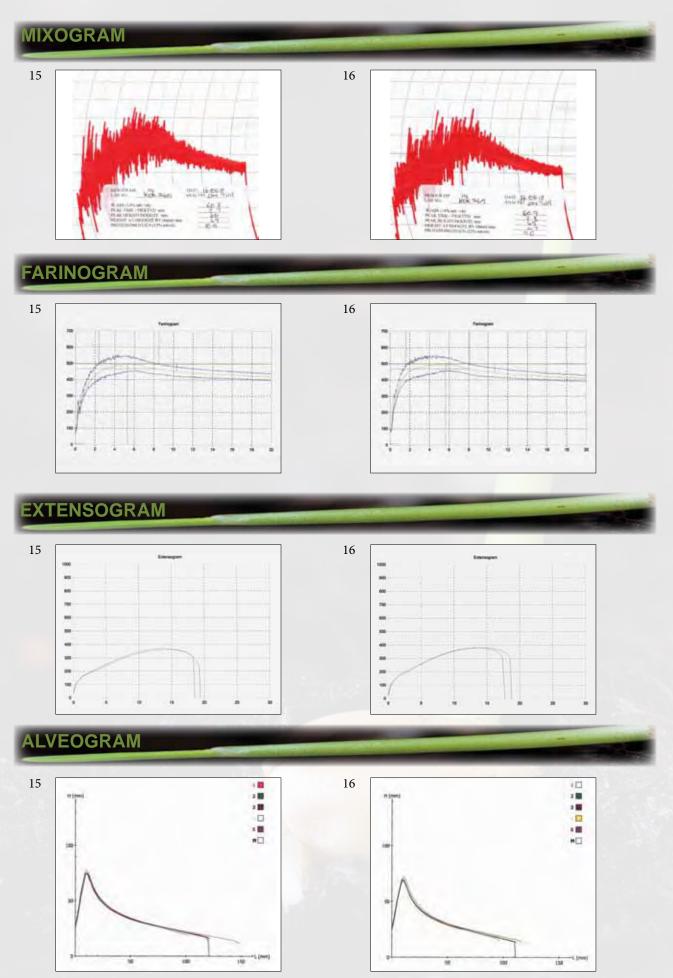

37

PRODUCTION REGION	(5) Rûens Wester	n Regior	n				(6) Rûens Easterr	n Region				
WHEAT	_											
	ave		min	max		stdev	ave		min	max	د :	stdev
Protein (12% mb), %	11.9)	9.3	14.6	5	1.27	11.8		9.9	13.6	6	0.93
Falling number, sec	361		268	455		39.99	349		316	443		23.47
1000 Kernel mass (13% mb), g	39.0		32.9	45.2		3.26	40.9		36.4	45.9		2.48
Hectolitre mass (dirty), kg/hl	80.7		76.0	82.6		1.72	80.2		78.4	82.2		0.85
Screenings (<1.8 mm sieve), %	0.76		0.05	2.24		0.65	1.50		0.18	3.61		0.92
Total damaged kernels, %	0.60		0.12	1.20		0.25	0.92		0.14	4.46		0.85
Combined deviations, %	2.10)	0.42	5.03	5	1.27	3.17		1.78	5.51		1.20
Number of samples			42	2			<u> </u>		2	24		
CULTIVARS		SST	087	44	1.0			SST	087	4:	2.4	
cultivars			056		3.5		<u> </u>		0127		7.8	
with highest %			0127		7.1			SST			5.3	
occurrence			015	11	.7				015	1:	3.2	
		SST	88	7	.3			SST	88	9	.4	
Number of samples			42	2					2	24		
MIXOGRAM (Quadromat Junior)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.6		2.2	2.8		0.16	2.6		2.0	3.3		0.31
Tail height (6 min), mm	49		42	55		2.97	50		43	54		2.94
Number of samples			42						-	24		
					CON	IPOSITE	SAMPL	ES.				
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	70.9	71.3	72.8	73.9	70.2	-	71.3	71.7	72.8	-	71.7	-
<i>FLOUR</i> Protein (12% mb), %	11.8	11.2	9.6	8.3	10.0		11.9	10.5	9.6	_	10.5	
Ash (db), %	0.59	0.61	0.60	0.56	0.62		0.56	0.59	0.61	-	0.58	
Colour, KJ (wet)	-4.1	-3.9	-3.9	-4.8	-4.0		-4.1	-4.1	-3.9	-	-4.0	-
Colour, Konica Minolta CM5 (dry)		0.0	0.0	1.0	1.0	<u> </u>			0.0		1.0	
L*	93.91	93.73	93.63	94.09	93.62	-	94.03	93.92	93.61	-	93.91	-
a*	0.48	0.52	0.57	0.33	0.55	- 1	0.43	0.44	0.48	-	0.41	- 1
b*	10.05	10.24	10.03	10.58	11.19	- 1	9.76	10.10	10.23	-	10.26	- 1
RVA												
Peak Viscosity, cP	2335	2098	2370	2354	2331	-	2433	2387	2297	-	2354	-
Minimum viscosity (Through), cP	1706	1626	1849	1858	1734	-	1859	1854	1779	-	1758	-
Final Viscosity, cP	2725	2396	2837	2841	2751	-	2860	2856	2744	-	2804	-
Peak Time, min	7.00	7.00	7.00	7.00	7.00		7.00	7.00	7.00	-	7.00	-
GLUTEN	22.0	210	26.2	22.0	07.4		22.0	20.4	24.5		27.2	
Wet gluten (14% mb), % Dry gluten (14% mb), %	32.8	31.0 10.4	26.2 8.8	22.0 7.3	27.1 9.2	-	33.0 11.2	28.4 9.7	24.5 8.3	-	9.3	-
Gluten Index	92	92	93	94	9.2 88		95	9.7	96	-	9.3	
	- 32	52	35	34	00		35	34	30		30	
FARINOGRAM												
Water absorption (14% mb), %	61.0	61.2	59.1	57.2	60.7		61.2	60.4	59.6	-	59.7	-
Development time, min	5.8	5.2	4.0	2.8	4.0	-	5.5	5.2	3.8	-	4.7	-
Stability, min	9.5	8.5	5.8	4.2	5.9	-	10.0	9.3	5.9	-	8.7	-
Mixing tolerance index, BU	31	33	49	60	40	-	25	29	45	-	30	-
EXTENSOGRAM (45 min pull)	112	101	74	57	74		100	01	67			
Area, cm ² Maximum height, BU	113 386	101 351	74 302	57 245	74 294	-	109 385	91 338	67 266	-	89 329	
Extensibility, mm	211	205	172	156	172	-	201	191	170	-	191	-
	211	205	112	130	112	-	201	191	170		191	
ALVEOGRAM Strength (S), cm ²	45.0	37.2	31.5	24.8	31.7		43.1	39.4	28.6	-	39.0	
Stability (P), mm	88	91	77	67	94	-	86	86	89	-	88	-
Distensibility (L), mm	132	96	108	105	81	-	124	119	74		111	
Configuration ratio (P/L)	0.67	0.95	0.71	0.64	1.16	-	0.69	0.72	1.20		0.79	-
MIXOGRAM Peak time, min	2.5	2.3	2.4	2.5	2.0		2.4	2.4	2.3	-	2.3	-
100g BAKING TEST Loaf volume, cm ³	1096	1046	963	862	945	-	1093	1056	1004	-	1040	-
Evaluation (see page 77)	0	0	0	0	0	-	0	0	0	-	0	-

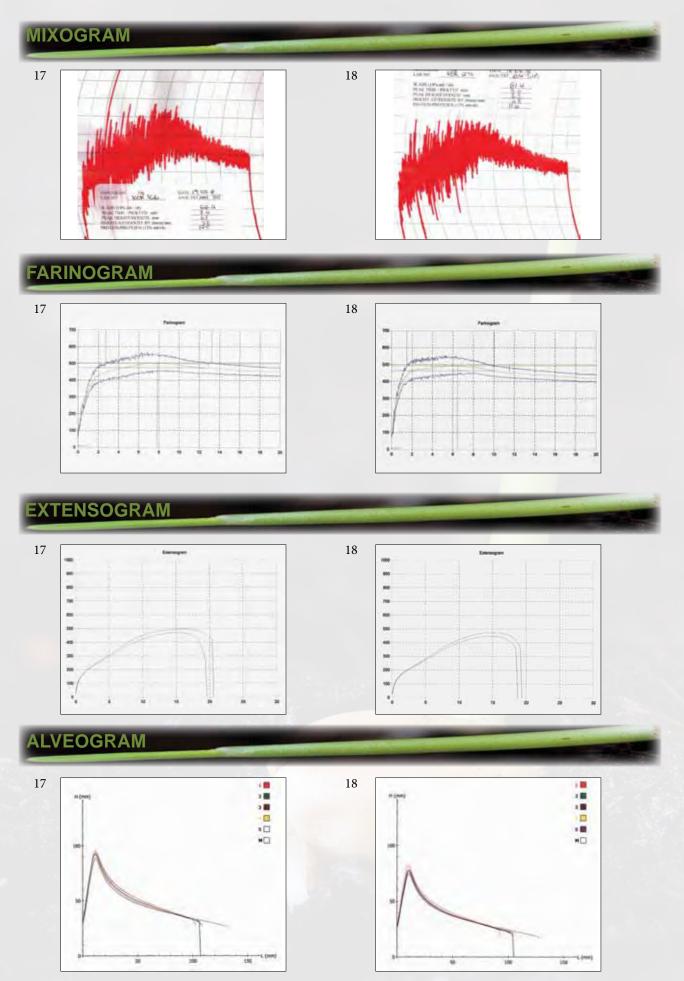


39

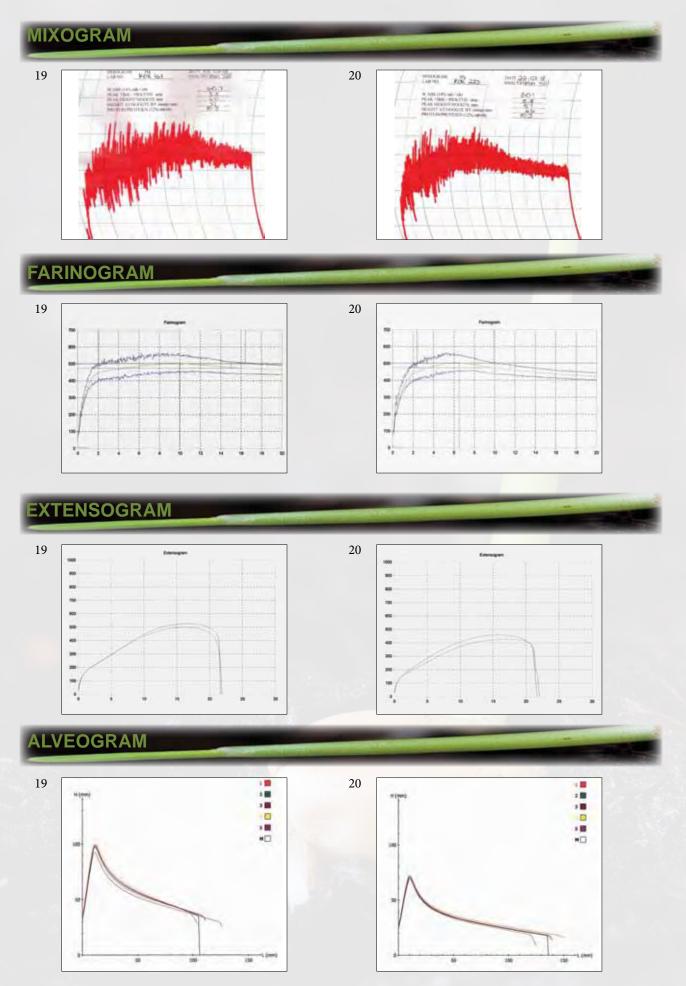
PRODUCTION REGION	(10) Griqual	and Wes	st Regior	n			(11) Vaalhar	ts Regic	'n			
WHEAT								_				
Protein (12% mb), %	11.6		9.3	12.7		0.79	11.8		9.9	13.7	,	0.90
Falling number, sec	365		300	443		32.21	397		344	472		36.02
1000 Kernel mass (13% mb), g	40.2		36.1	48.8		2.72	40.5		33.3	45.7		3.69
Hectolitre mass (dirty), kg/hl	84.8		83.2	86.3		0.91	82.6		80.0	85.3	3	1.56
Screenings (<1.8 mm sieve), %	0.73		0.10	1.86		0.48	1.32		0.23	2.19		0.59
Total damaged kernels, %	0.56		0.12	2.24		0.43	0.36		0.08	0.74		0.20
Combined deviations, %	1.70)	0.47	3.28		0.86	2.63		0.95	3.60)	0.83
Number of samples			3	0					1	14	-	
CULTIVARS		PAN	I 3471	23	8.8			PAN	3471	39	9.2	
cultivars		SST	875	24	.5				884	26	6.6	
with highest %			884	21				SST			.4	
occurrence			835	9.					895		.1	
Number of samples		BAV	IAANS	6. 0	.0			SST	835	6 14	5.9	
Number of samples			3	0						14		
MIXOGRAM (Quadromat Junior)	ave		min	max	: :	stdev	ave		min	max		stdev
Peak time, min	2.3		1.7	2.8		0.29	2.6		2.2	3.0		0.21
Tail height (6 min), mm Number of samples	43		36	50 0		3.90	46		41	52 1 4		2.95
	<u> </u>		3	<u> </u>	CO	MPOSIT	E SAMPI	LES		4		
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	73.9	73.5	73.4	-	-	-	73.4	74.6	-	-	74.1	-
<i>FLOUR</i> Protein (12% mb), %	11.6	10.6	9.8				11.2	10.6			10.6	
Ash (db), %	0.55	0.60	0.65	-	-	-	0.61	0.60	-		0.63	-
Colour, KJ (wet)	-4.7	-4.8	-4.9	-	-	-	-4.5	-4.7	-	-	-4.6	-
Colour, Konica Minolta CM5 (dry)	<u> </u>											<u> </u>
L*	93.93	94.11	94.10	-	-	-	93.97	93.93	-	-	93.99	-
a*	0.52	0.50	0.49	-	-	-	0.44	0.47	-	-	0.47	-
<u>b*</u>	10.24	9.89	10.12	-	-		9.76	10.23	-	-	10.04	-
RVA												
Peak Viscosity, cP	2298	2378	2303	-	-	-	2255	2252	_	-	2127	-
Minimum viscosity (Through), cP	1729	1774	1727	-	-	- 1	1651	1712	-	-	1600	-
Final Viscosity, cP	2561	2672	2589	-	-	-	2418	2544	-	-	2409	-
Peak Time, min	7.00	7.00	7.00	-	-	-	7.00	7.00	-	-	7.00	-
GLUTEN												
Wet gluten (14% mb), %	32.5	30.7	27.8	-	-	- I	32.4	30.7	- 1	-	30.8	-
Dry gluten (14% mb), %	10.8	9.9	8.8	-	-	-	10.5	9.9	-	-	10.1	-
Gluten Index	90	85	90	-	-	-	86	85	-	-	83	-
FARINOGRAM			50.0				01.0	CO 4			0.7	
Water absorption (14% mb), % Development time, min	61.3 5.0	60.9 5.0	59.3 4.3	-		-	61.3 5.5	60.4 4.0	-		60.7 4.3	-
Stability, min	5.5	5.9	6.0		-		6.1	5.3			5.4	
Mixing tolerance index, BU	49	49	44	-	-	-	51	51	-	-	53	-
EXTENSOGRAM (45 min pull)	400	407					13	1				
Area, cm ² Maximum height, BU	138 504	127 469	69 322	-	-	-	94 381	84 322	-	-	82 306	-
Extensibility, mm	205	199	154	-		-	176	191	-	-	189	
	200	100	104				170	101			100	1
ALVEOGRAM Strength (S), cm ²	36.5	30.3	30.4	-	-		37.3	33.5	_	-	31.8	-
Stability (P), mm	79	86	75	-	-	<u> </u>	90	75	-	-	81	-
Distensibility (L), mm	115	77	101	-	-	-	98	115	-		95	-
Configuration ratio (P/L)	0.69	1.12	0.74	-	-	-	0.92	0.65	-	-	0.85	-
MIXOGRAM Peak time, min	2.2	2.4	2.6	_	_	-	2.5	2.4	_	-	2.3	-
100g BAKING TEST Loaf volume, cm ³	1193	1104	1004	_	-	-	1071	1085	-	-	1086	-
Evaluation (see page 77)	0	0	0	-	-	-	0	0	-	-	0	-



	140						144					
PRODUCTION REGION	(12) North V Wester	Vest n Regioi	ı				(14) North V Southe	Vest rn Regio	on			
WHEAT	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.6		11.9	13.6		0.86	13.0		12.6	13.6		0.55
Falling number, sec	403		378	435		24.35	432		412	455		21.66
1000 Kernel mass (13% mb), g	37.7	,	31.0	43.2		6.37	39.5		38.6	40.1		0.79
Hectolitre mass (dirty), kg/hl	81.0)	80.9	81.1		0.10	82.3		81.7	82.8		0.55
Screenings (<1.8 mm sieve), %	0.85		0.06	1.73		0.92	1.49		1.41	1.59		0.09
Total damaged kernels, %	0.27		0.18	0.36		0.08	0.21		0.18	0.24		0.03
Combined deviations, % Number of samples	1.35)	0.24	2.43 4		1.24	1.93		1.83	1.98 3		0.08
Number of samples				4						3		
CULTIVARS		SST	843	41	.5			SST	843	35	5.7	
cultivars			884	34					875		.0	
with highest %			875	18					3497	14	l.0	
occurrence		PAN	3471	4.				SST	884	14	l.0	
		KAF	RIEGA	1.	.3			SST	835		.3	
Number of samples				4						3		
MIXOGRAM (Quadromat Junior)						t day						otdov
Peak time, min	ave 3.3	!	min 2.3	max 5.5		stdev 1.47	ave 4.1		min 3.9	max 4.3		stdev 0.21
Tail height (6 min), mm	49		45	55		4.73	56		55	4.3		1.15
Number of samples			-	4						3		1.10
					CO	MPOSIT	E SAMP	LES				
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	73.7	74.9	-	-	-		74.8	-	-	-	-	-
51 0110												
FLOUR	12.0	11.0					10.1					
Protein (12% mb), % Ash (db), %	12.9 0.61	0.60	-	-	-	- -	12.1 0.63	-	-	-	-	-
Colour, KJ (wet)	-4.6	-4.3	_	-			-4.1					
Colour, Konica Minolta CM5 (dry)	-4.0	-4.5	-	_			-4.1		-			-
L*	93.98	94.16	-	-	-	-	93.67	-	-	-	-	-
a*	0.48	0.39	-	-	-	-	0.45	-	-	-	-	-
b*	9.14	8.41	-	-	-	-	8.92	-	-	-	-	-
RVA		0070					0.474					
Peak Viscosity, cP Minimum viscosity (Through), cP	2606 1949	2378 1654	-	-	-	-	2471 1723	-	-	-	-	-
Final Viscosity, cP	2899	2657	-	-		-	2653		-			<u> </u>
Peak Time, min	7.00	7.00	-	-	_	-	7.00	_	-	-	-	-
GLUTEN												
Wet gluten (14% mb), %	32.1	31.4	-	-	-	-	31.0	-	- 3	-	-	-
Dry gluten (14% mb), %	11.6	10.7	-	-	-	<u> </u>	10.7	-	-	-	-	-
Gluten Index	100	86	-	-	-	-	98	-	-	-	-	-
FARINGCRAM												
FARINOGRAM Water absorption (14% mb), %	60.1	60.0		-	_		59.8	4			-	
Development time, min	9.9	4.5		-		-	10.0		-		-	
Stability, min	17.5	5.2		-	-	-	15.0	-	-	<u> </u>	-	-
Mixing tolerance index, BU	15	58	-	-	-	-	26	-	-	-	-	-
EXTENSOGRAM (45 min pull)			1-					1.				
Area, cm ²	178	100		-	-	-	141	-	-	-	-	-
Maximum height, BU	557	362	-	-	-	<u> </u>	531	-		-	-	
Extensibility, mm	235	198	-	-	-	-	201	-	-	-	-	-
ALVEOGRAM												370
Strength (S), cm ²	63.0	38.3		_	-		52.6	_	-	-	-	-
Stability (P), mm	93	71		-	-	-	103	-	-	-	-	-
Distensibility (L), mm	129	150	-	-	-	- 1	97		-		-	-
Configuration ratio (P/L)	0.72	0.47	-	-	-	-	1.06	-	-	-	-	-
MIXOGRAM	1.32								3			
Peak time, min	4.0	2.2	- /	-	-	-	3.9	-	-	<u> </u>	-	-
			18									
100g BAKING TEST	1222	1106					1120					
Loaf volume, cm ³ Evaluation (see page 77)	1222	1196 0	-	-		<u> </u>	1129 0	-	-		-	
Evaluation (see page 11)		0		-				-				

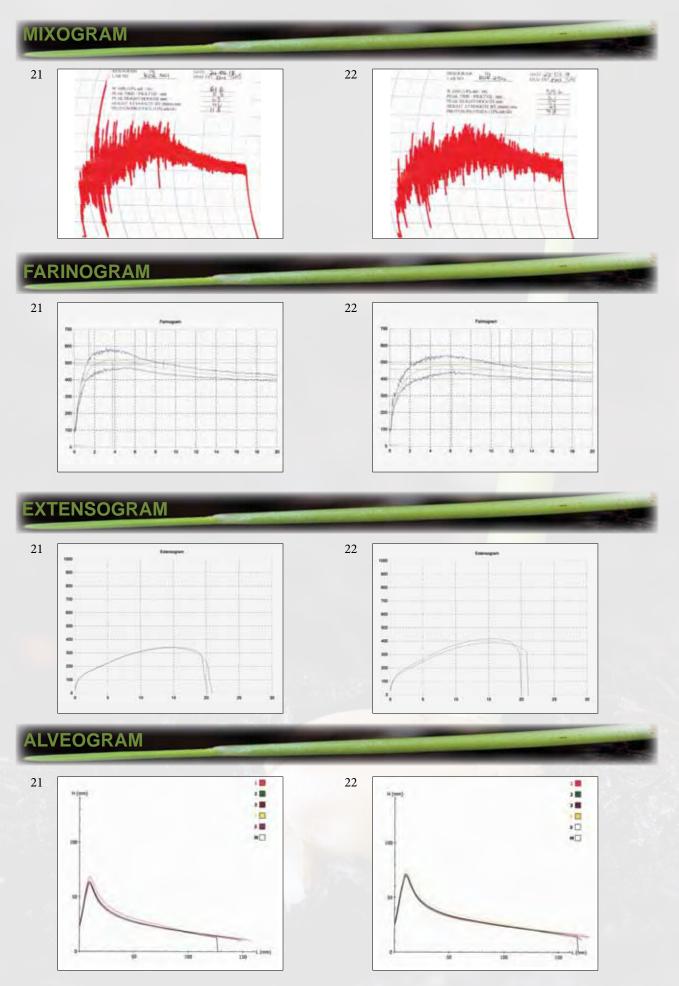

43

PRODUCTION REGION	(15) North V South-	Vest Eastern I	Region				(16) North V Central	Vest -Easterr	n Region			
WHEAT												_
	ave	•	min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.4		11.5	13.8		0.79	11.9		-	-		-
Falling number, sec	455	;	403	579		59.81	380		-	-		-
1000 Kernel mass (13% mb), g	41.7	7	34.5	45.3		3.52	41.0)	-	-		-
Hectolitre mass (dirty), kg/hl	82.2	2	81.5	82.9		0.56	81.8	3	-	-		-
Screenings (<1.8 mm sieve), %	1.01		0.43	1.99		0.55	1.19)	-	-		-
Total damaged kernels, %	0.23	3	0.12	0.30		0.07	0.32	2	-	-		-
Combined deviations, %	1.35	5	0.61	2.55		0.68	1.73	3	-	-		-
Number of samples				7						1		
CULTIVARS		PAN	3471	34	6			SST	843	56	6.0	
cultivars			3400	18					875		1.0	
with highest %			884	17					-		-	
occurrence			3497	13					-		-	
		SST		6.					-		-	
Number of samples				7	-					1		
MIXOGRAM (Quadromat Junior)	ave	•	min	max		stdev	ave	!	min	max		stdev
Peak time, min	2.9		2.5	3.4		0.31	2.8		-	-		-
Tail height (6 min), mm	49		46	52		1.86	47		-	-		-
Number of samples				7						1		
						· · · · · · · · · · · · · · · · · · ·	E SAMP					<u> </u>
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	74.7	75.1	-	-	-	-	-	74.6	-	-	-	-
FLOUR												
Protein (12% mb), %	11.9	10.6	-	-	-	-	-	10.9	-	-	-	-
Ash (db), %	0.62	0.64	-	-	-	-	-	0.67	-	-	-	-
Colour, KJ (wet)	-4.3	-4.3	-	-	-	-	-	-4.0	-	-	-	-
Colour, Konica Minolta CM5 (dry)	00.50							00 70				
<u>L*</u>	93.56	93.81	-	-	-		-	93.73	-	-	-	
<u>a*</u>	0.46	0.44	-	-	-		-	0.44	-	-	-	
<u>b*</u>	10.03	10.12	-	-	-	-	-	9.97	-	-	-	
RVA												
Peak Viscosity, cP	2431	2330	-	-	-	-	-	2359	-	-	-	-
Minimum viscosity (Through), cP	1791	1716	-	- 1	-	<u> </u>	-	1770	-	-	-	<u> </u>
Final Viscosity, cP	2606	2574	-	-	_	-	-	2539	-	-	-	-
Peak Time, min	7.00	7.00	-	-	-	-	-	7.00	-	-	-	-
GLUTEN												
Wet gluten (14% mb), %	31.8	29.1	-	-	-	-	-	29.9	-	-	-	-
Dry gluten (14% mb), %	10.7	9.6	-	-	-	-	-	10.0	-	-	-	-
Gluten Index	94	97	-	-	-	-	-	93	-	-	-	-
FARINOGRAM Water absorption (14% mb), %	61.4	60.6		-			-	59.4	-	_	-	_
Development time, min	5.3	5.2	-		-	-	-	5.7	-	- 1	-	-
Stability, min	6.1	7.2		-	-	-	-	6.5	-	-	-	-
Mixing tolerance index, BU	47	43	-	-	-	-	-	52	-	-	-	-
EXTENSOGRAM (45 min pull) Area, cm ²	97	99						97				
Maximum height, BU	365	374	-	-		-	-	380		-		
Extensibility, mm	191	189	-	-	-	-	-	184	-	-		-
ALVEOGRAM								-				
Strength (S), cm ²	41.7	37.3	-	-	-		-	34.9	-	-	-	-
Stability (P), mm	83	85	-	-	-	-	-	76	-	-	-	
Distensibility (L), mm	120	101	-	-	-	-	-	110	-	-	-	-
Configuration ratio (P/L)	0.69	0.84	-	-	-	-	-	0.69	-	-	-	-
MIXOGRAM Peak time, min	2.6	2.7		_	_			2.7	-	_	_	_
100g BAKING TEST Loaf volume, cm ³	1156	1152					_					
Evaluation (see page 77)	0	0	-	-	-	-	-	1116 0	-	-	-	
Evaluation (see page 77)	0				-			0				


45

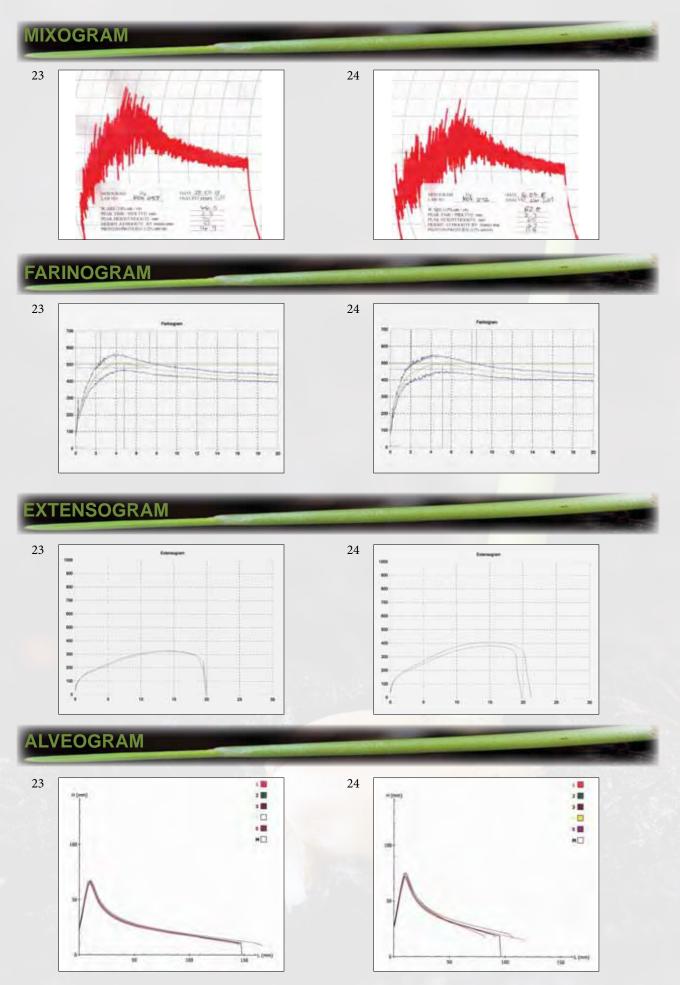
PRODUCTION REGION	(17) North V Central		rn Regio	on (Ottoso	dal)		(18) North V Central		ı (Venter:	sdorp)		
WHEAT												
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.9		11.9	13.9		0.82	12.2		-	-		-
Falling number, sec	378		339	395		26.36	393		-	-		-
1000 Kernel mass (13% mb), g	36.9		34.9	38.2		1.44	39.3		-	-		-
Hectolitre mass (dirty), kg/hl	81.9		81.1	82.3		0.53	81.5		-	-		-
Screenings (<1.8 mm sieve), %	1.83		0.53	3.34		1.49	2.17		-	-	_	-
Total damaged kernels, %	0.37		0.14	0.58		0.24	0.36		-	-		-
Combined deviations, % Number of samples	2.78	<u> </u>	1.09	4.88 4		1.93	2.95		-	-		-
Number of samples	_			4						1	_	
CULTIVARS		SST	Г 843	68	.0			PAN	N 3471	57	7.0	
cultivars			Г 884	17					T 884		5.0	
with highest %			Г 875	6.					N 3400		3.0	
occurrence			Г 835	4.	.8		1		-		-	
			V 3471	4.					-		-	
Number of samples				4						1		
MIXOGRAM (Quadromat Junior)			min	mov		otdov			min	max		otdov
Peak time, min	ave 3.3		min 2.5	max 3.8		stdev 0.55	ave 3.0		min -	max		stdev
Tail height (6 min), mm	51		46	53		3.37	48		-	-		-
Number of samples				4		0.01	10			1		
				-	co	MPOSIT	E SAMPI	LES			_	
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	71.9	-	-	71.4	-	- 1	73.8	-	-	- 1	-	-
FLOUR												
Protein (12% mb), %	12.4	-	-	10.5	-	-	11.2	-	-	-	-	-
Ash (db), %	0.63	-	-	0.66	-	-	0.58	-	-	-	-	-
Colour, KJ (wet)	-4.5	-	-	-3.9	-	-	-4.1	-	-	-	-	-
Colour, Konica Minolta CM5 (dry)	04.00			02.62			04.01					
<u>L*</u>	94.08	-	-	93.63 0.44	-	-	94.01	-	-	-	-	-
<u>a*</u>	0.41			9.56	-	-	0.33	-	-	-	-	
<u> </u>	0.94			9.50	-		0.40			-		
RVA												
Peak Viscosity, cP	2368	-	-	2314	-	-	2429	-	-	-	-	-
Minimum viscosity (Through), cP	1663	-	- 1	1679	-	- 1	1778	-	-	-	-	-
Final Viscosity, cP	2602	-	-	2578	-	- 1	2622	-	-	-	-	-
Peak Time, min	7.00	-	-	7.00	-	-	7.00	-	-	-	-	-
GLUTEN												
Wet gluten (14% mb), %	31.8	-	-	30.0	-		30.8	-	-	-	-	-
Dry gluten (14% mb), %	11.1	-	-	9.8	-	-	10.4	-		-	-	-
Gluten Index	98	-	-	88	-		96	-		-	-	-
FARINOGRAM Water absorption (14% mb), %	62.1			61.9	_		60.0			_		
Development time, min	7.9	-	-	4.3	-	-	6.5	-	-	-	-	1.
Stability, min	10.5		-	4.5		-	8.5		-		-	<u> </u>
Mixing tolerance index, BU	30	-	-	58	-	-	39	-	-	-	-	-
EXTENSOGRAM (45 min pull)				00								
Area, cm ²	134	-	-/	76	-	-	118	-	-	-	-	-
Maximum height, BU	484	-	-	317	-	-	461	-		-	-	
Extensibility, mm	202	-	-	169	-		192	-	-	-	-	-
ALVEOGRAM Strength (S), cm ²	54.9			33.2	-		41.9				-	
Stability (P), mm	102	-		91	-	-	85	-	-	-	-	-
Distensibility (L), mm	107	-	-	91	-	-	104	-	- 1	-	-	-
Configuration ratio (P/L)	0.95	-	-	1.00	-	-	0.82		-	-	-	-
MIXOGRAM Peak time, min	3.2	_	1	2.3	-	-	3.1		-	_	-	_
100g BAKING TEST Loaf volume, cm ³	1208	_		1025	_		1079	_	-	_	_	_
Evaluation (see page 77)	0	-	-	0	-	- 1	0	-	-	-	-	-
							, ř					

47


PRODUCTION REGION	(19) North V Central	Vest Region	(Lichten	iburg)			(20) North V Eastern	Vest 1 Region				
WHEAT												_
	ave		min	max	:	stdev	ave		min	max		stdev
Protein (12% mb), %			9.6	13.5		1.31	11.7		10.7	13.0		0.75
Falling number, sec	382		331	426	:	31.00	372		330	434		36.39
1000 Kernel mass (13% mb), g	38.7		32.7	42.5		3.02	41.2		38.5	47.2		2.88
Hectolitre mass (dirty), kg/hl	81.8		80.9 0.11	82.5 1.85		0.51	82.5		78.9 0.83	85.6		1.89 0.44
Screenings (<1.8 mm sieve), % Total damaged kernels, %	0.90		0.11	1.85		0.70	0.65		0.83	0.84		0.44
Combined deviations, %	1.56		0.24	2.59		0.20	2.51		1.95	3.24		0.43
Number of samples	1.00			11		0.12	2.01			8		0.10
CULTIVARS		557	843	43	2			551	875	27	7.0	
cultivars			884	26				DUZ			.0	
with highest %			875	13					843	15		
occurrence			835	5.					884).3	
			3471	3.	8				FANTS	6	.3	
Number of samples			1	11						8		
MIXOGRAM (Quadromat Junior)	ave		min	max	:	stdev	ave		min	max		stdev
Peak time, min	3.6		2.1	4.6		0.81	2.9		2.3	4.7		0.76
Tail height (6 min), mm	49		42	55		4.38	47		42	57		4.57
Number of samples			1	11		MPOSIT	E SAMPI			8		
CLASS AND GRADE	B1	B2	B3	B4	UT		B1	B2	B3	B4	UT	cow
Bühler Extraction, %	73.6	72.9	73.6	74.2	-	-	75.1	75.5	74.3	-	-	-
FLOUR Protein (12% mb), %	12.6	10.8	9.9	9.2	_	<u> </u>	11.8	10.5	9.6	_	_	_
Ash (db), %	0.57	0.60	0.58	0.54	-	-	0.61	0.59	0.63	-	-	-
Colour, KJ (wet)	-4.1	-4.2	-4.5	-4.5	-	-	-3.9	-4.4	-4.2	-	-	-
Colour, Konica Minolta CM5 (dry)												
<u>L*</u>	93.71	93.84	94.18	94.05	-	-	93.59	93.70	93.76	-	-	-
a*	0.46	0.43	0.42	0.38	-	-	0.33	0.46	0.42	-	-	-
<u>b*</u>	9.00	9.36	9.81	9.58	-		8.36	9.90	9.68	-	-	-
RVA												
Peak Viscosity, cP	2460	2298	2474	2454	-	-	2227	2435	2517	-	-	-
Minimum viscosity (Through), cP	1743	1676	1789	1794	-	-	1701	1864	1909	-	-	-
Final Viscosity, cP	2705	2588	2847	2849	-	-	2435	2783	2797	-	-	-
Peak Time, min	7.00	7.00	7.00	7.00	-		7.00	7.00	7.00	-	-	-
GLUTEN												
Wet gluten (14% mb), %	32.1	28.3	27.2	21.8	-	-	31.0	29.4	25.8	-	-	-
Dry gluten (14% mb), %	11.4	9.7	8.9	7.5	-	-	10.9	9.5	8.7	-	-	-
Gluten Index	99	96	94	100	-	-	96	86	90	-	-	-
FARINOGRAM												
Water absorption (14% mb), %	61.4	60.6	59.2	57.0	-	-	60.9	59.1	58.1	-	-	-
Development time, min	10.0	5.0	4.5	5.8	-	-	6.5	4.0	3.7	-		
Stability, min	14.4	6.6	5.6	10.3		-	7.5	4.8	5.4	-	-	-
Mixing tolerance index, BU	27	46	55	29	-	-	41	56	48	-	-	-
EXTENSOGRAM (45 min pull) Area, cm ²	152	106	85	111		-	133	76	90	-	-	
Maximum height, BU	513	411	353	466	-	-	444	291	354	-	-	
Extensibility, mm	219	190	171	180	-	-	220	188	184	-	-	-
ALVEOGRAM Strength (S), cm ²	60.4	34.6	35.5	39.3	-	- /	45.1	30.7	30.7	-	-	
Stability (P), mm	108	91	76	84	-	-	77	68	75	-	-	-
Distensibility (L), mm	106	82	121	101	-	-	135	119	96		-	
Configuration ratio (P/L)	1.02	1.11	0.63	0.83	-	-	0.57	0.57	0.78	-		-
MIXOGRAM Peak time, min	3.6	2.7	2.6	3.4	-	-	2.9	2.4	2.9	_	-	
100g BAKING TEST Loaf volume, cm ³	1203	1197	1023	1006	-	-	1207	1099	993	-	-	-
Evaluation (see page 77)	0	0	0	0	-	-	0	0	0	-	-	-

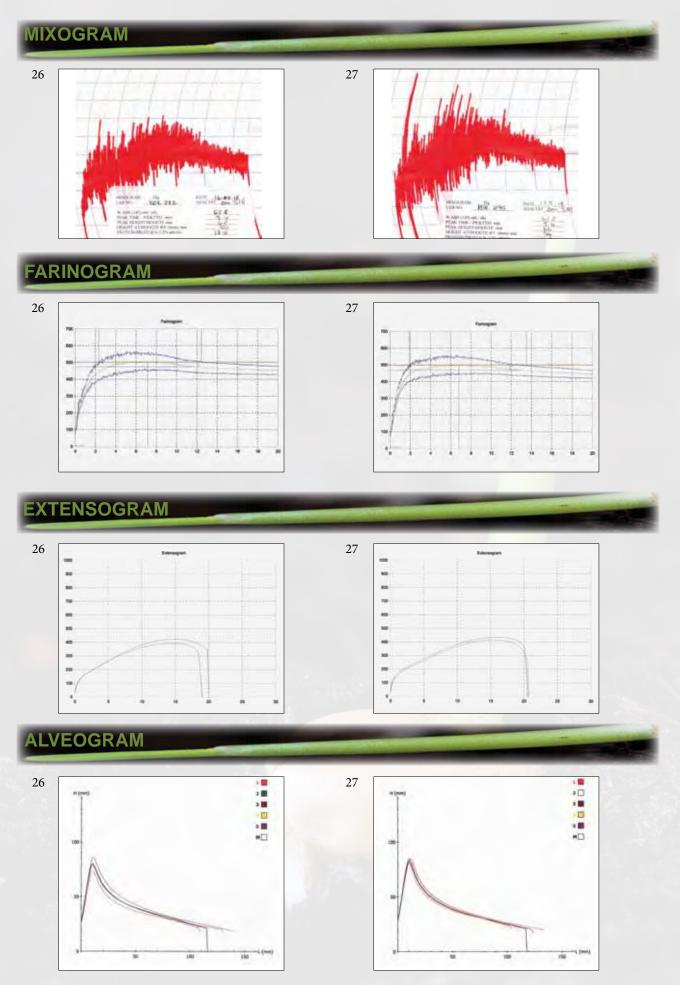
49

South African Quality data per production region summer RAINFALL AND IRRIGATION WHEAT

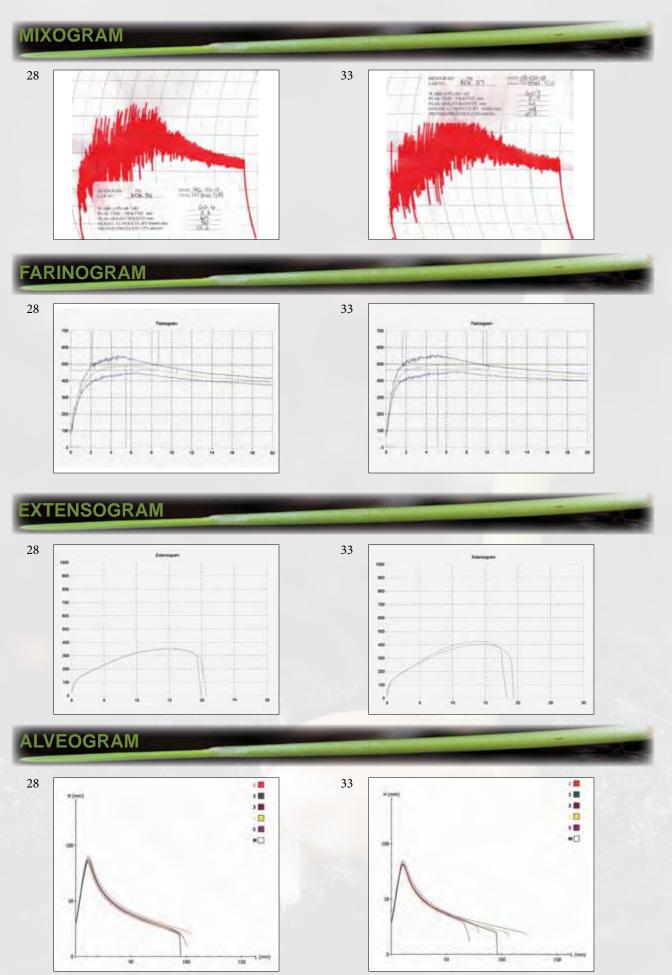

PRODUCTION REGION	(21) Free St North-V		Region (Viljoens	kroon)		(22) Free St North-V		Region	(Bothavi	ille)	
MULE AT												_
WHEAT	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.5		-	-		-	11.6		10.4	12.9		1.25
Falling number, sec	297		-	-		-	352		320	395		38.84
1000 Kernel mass (13% mb), g	39.2	2	-	-		-	39.9)	32.8	44.4		6.20
Hectolitre mass (dirty), kg/hl	81.9)	-	-		-	80.0		79.7	80.3		0.31
Screenings (<1.8 mm sieve), %	1.58		-	-		-	1.03		0.98	1.08		0.05
Total damaged kernels, %	0.40		-	-		-	0.59		0.32	0.82		0.25
Combined deviations, %	2.12		-	-		-	1.75		1.56	1.92	_	0.18
Number of samples				1						3	_	
CULTIVARS		SST	Г 884	72	2.0			SST	387	55	i.0	
cultivars			V 3471	28					IAANS	11		
with highest %			-						884	10		
occurrence			-		-				875	9.	.3	
			-	-	-		İ	PAN	3471	7.	.0	
Number of samples				1						3		
MIXOGRAM (Quadromat Junior)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.8		-	-		-	3.0		2.8	3.1		0.17
Tail height (6 min), mm	46		-	-		-	48		47	50		1.53
Number of samples	_			1		MPOSIT	E SAMP			3		
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	cow
Bühler Extraction, %	74.8			-	-		73.2	76.4	77.7		-	-
						<u> </u>						
FLOUR												
Protein (12% mb), %	11.3	-	-	-	-	-	11.7	10.6	9.6	-	-	-
Ash (db), %	0.61	-	-	-	-	-	0.61	0.58	0.57	-	-	-
Colour, KJ (wet)	-3.6	-	-	-	-	-	-4.0	-4.2	-4.2	-	-	-
Colour, Konica Minolta CM5 (dry)												
<u>L*</u>	93.53	-	-	-	-	-	93.91	93.90	94.06	-	-	-
<u>a*</u>	0.38	-	-	-	-	-	0.38	0.41 9.81	0.31 9.99	-	-	-
<u> </u>	9.05			-			10.20	9.01	9.99	-		
RVA												
Peak Viscosity, cP	2018	-	-	-	-	-	2244	2248	2358	-	-	-
Minimum viscosity (Through), cP	1685	-	-	-	-	-	1911	1840	1765	-	-	-
Final Viscosity, cP	2126	-	-	-	-	-	2335	2458	2619	-	-	-
Peak Time, min	6.93	-	-	-	-	-	6.80	7.00	7.00	-	-	-
GLUTEN Wet gluten (14% mb), %	31.7	-	_	-	_		32.3	30.5	25.6	_	-	
Dry gluten (14% mb), %	10.5	-	-	-	-	- 1	10.9	10.4	8.5	-	-	-
Gluten Index	94	-	-	-	-	-	97	97	99	-	-	-
FARINOGRAM Water absorption (14% mb), %	50.6		_				59.0	59.3	58.3			
Development time, min	59.6 3.8			-		-	58.9 6.2	59.3	5.0	-		
Stability, min	5.7	-		-	-	-	8.8	5.7	6.2	-		-
Mixing tolerance index, BU	55	-	-	-	-	-	37	53	52	-	-	· ·
EXTENSOGRAM (45 min pull)							13					
Area, cm ²	96	-		-	-	-	115	87	80	-	-	-
Maximum height, BU	341	-	-	-	-	-	401	305	329	-	-	-
Extensibility, mm	206	-	-	-	-	-	207	203	176	-		-
ALVEOGRAM Strength (S), cm ²	35.2	-		-	-		42.7	37.0	33.3	-	-	
Stability (P), mm	71	/		-	-	-	67	66	70	-	-	-
Distensibility (L), mm	126	- /		-	-	-	167	145	118	. ···	-	-
Configuration ratio (P/L)	0.56		-	-	-	-	0.40	0.46	0.59	-		-
MIXOGRAM Peak time, min	2.6			_	-	-	2.9	2.7	2.9	_	-	-
100g BAKING TEST Loaf volume, cm ³	1158	-		-	-	_	1057	1085	1047	-	-	-
Evaluation (see page 77)	0	-	-	-	_	-	0	0	0	-	-	-

51

South African Quality data per production region summer RAINFALL AND IRRIGATION WHEAT

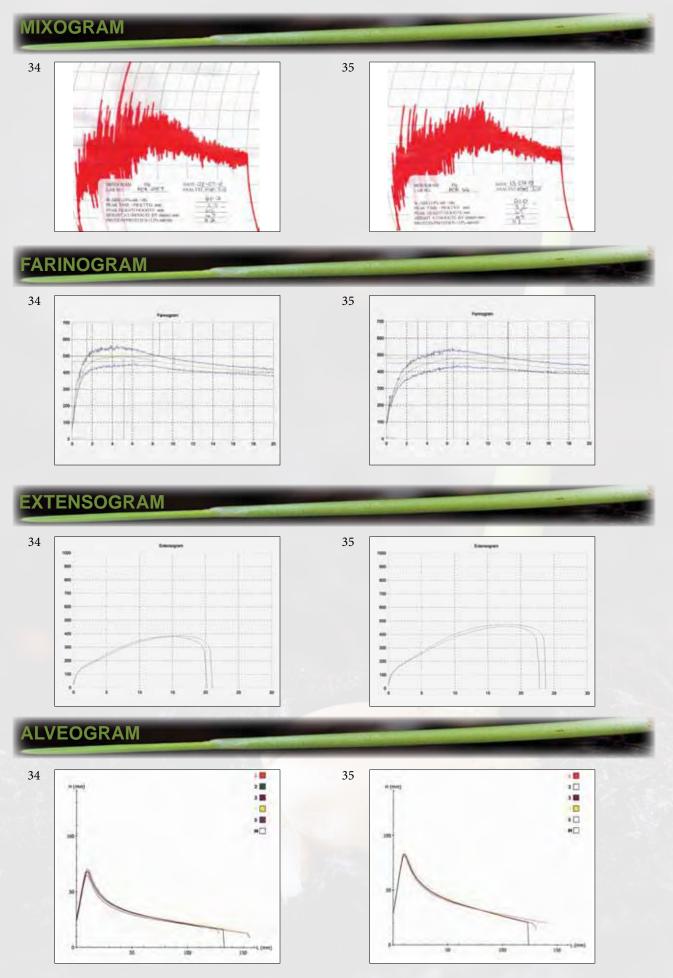

PRODUCTION REGION	(23) Free St	ate		(Bultfonte	ein)		(24) Free St	ate Region				
	North	restern	Region	Buillonia	enny		Central	Region				
WHEAT												
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	13.9		11.7	17.1		2.06	12.4		10.5	14.9		1.16
Falling number, sec	388		263	445		66.93	400		359	463		32.18
1000 Kernel mass (13% mb), g	37.3		33.1	42.1		3.50	35.3		29.4	49.0		5.37
Hectolitre mass (dirty), kg/hl	80.8		79.0	82.4		1.54	80.3		77.7	82.1		1.45
							<u> </u>					
Screenings (<1.8 mm sieve), %	2.06		1.18	3.70		1.17	2.38		1.11	5.22		1.33
Total damaged kernels, %	0.69		0.16	1.88		0.71	0.23		0.12	0.48		0.10
Combined deviations, %	3.12	2	1.50	6.06		2.10	2.95		1.96	5.34		1.13
Number of samples				6					1	1		
CULTIVARS		DAN	1 2 4 7 4	42	2				1 2 4 7 1	40	л	
			3471	43					3471		3.4	
cultivars			387	13					3400		6.3	
with highest %			3120	11					3161		.1	
occurrence			3368	10					875		.9	
		SST	875	7.	2			SST	884		.8	
Number of samples				6					1	11		
MIXOGRAM (Quadromat Junior)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.5		1.6	3.2		0.58	2.8		2.4	4.0		0.49
Tail height (6 min), mm	48		45	51		2.28	48		44	53		2.81
Number of samples	40			<u>51</u> 6		2.20	40					2.01
				0		MDOSIT	E SAMPI	ES	······			
	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	cow
CLASS AND GRADE Bühler Extraction, %	73.6	74.5	<u>вз</u> -		01					D4	01	COW
Bunier Extraction, %	/ 3.0	74.5	-	-	-		71.7	72.1	72.6	-	-	-
51.0115												
FLOUR												
Protein (12% mb), %	12.9	10.4	-	-	-	-	12.2	10.5	9.2	-	-	-
Ash (db), %	0.65	0.63	-	-	-	-	0.60	0.64	0.63	-	-	-
Colour, KJ (wet)	-3.9	-4.7	-	-	-	-	-4.4	-4.7	-4.2	-	-	-
Colour, Konica Minolta CM5 (dry)												
L*	93.47	94.24	-	-	-	-	93.60	94.03	93.85	-	-	-
a*	0.50	0.40	-	- 1	-	- 1	0.44	0.40	0.37	-	-	-
b*	9.78	9.16	-	- 1	-	- 1	10.23	9.68	10.27	-	-	-
			1			1						
RVA												
Peak Viscosity, cP	1597	2606	-	_	_	-	2457	2423	2394	-	-	- I
Minimum viscosity (Through), cP	1405	1860	-	- 1	-	-	1877	1729	1716	-	-	· ·
Final Viscosity, cP	1712	2874					2710	2730	2706			<u> </u>
		<u> </u>	-	-			7.00	7.00				
Peak Time, min	6.73	7.00	-	-	-		7.00	7.00	7.00		-	-
CLUTEN												
GLUTEN	07.5	00.4					04.0	00.4	00.4			
Wet gluten (14% mb), %	37.5	28.4		-	-	<u> </u>	34.0	29.1	23.1	-	-	
Dry gluten (14% mb), %	12.2	9.4	-	-	-		11.1	9.5	8.0	-	-	-
Gluten Index	75	97	-	-	-	-	91	93	98	-	-	-
FARINOGRAM												
Water absorption (14% mb), %	61.5	57.9	-	-	-	-	60.7	58.5	60.6	-	-	-
Development time, min	4.8	5.2	÷ .	-	-	-	5.2	4.7	1.9	-	-	
Stability, min	4.9	6.5		-	-	-	6.5	5.6	10.6	-	-	-
Mixing tolerance index, BU	51	54	-	-	-	-	46	51	25	-	-	-
EXTENSOGRAM (45 min pull)								-				
Area, cm ²	91	105		-	-	-	112	88	102	_	-	
Maximum height, BU	324	402	-	-	-		395	361	481		-	
Extensibility, mm	201	188	-	-		-	207	178	160	-	-	
	201	100	-	-	-		207	178	100			
ALVEOGRAM	20.0	27.4					24.6	20.0	20.4			273
Strength (S), cm ²	38.2	37.4	-	-	-	-	34.6	28.9	29.4	-	-	
Stability (P), mm	73	67	-	-	-	-	80	77	146	-	-	-
Distensibility (L), mm	147	154	-	-	-	-	96	83	30		-	-
Configuration ratio (P/L)	0.50	0.44	-	-	-	-	0.83	0.93	4.87	-	-	-
								1.1				
MIXOGRAM									3.			
Peak time, min	2.0	2.9	- /	-	-	-	2.4	2.4	3.4	-	-	-
			110									
100g BAKING TEST			1.28									
Loaf volume, cm ³	1153	1097	-	-	-	- 1	1250	1068	856	-	-	-
Evaluation (see page 77)	0	0	-	-	_	- 1	0	0	0	-	-	-
		, ř	_			· · · · · ·	, ř	, i	_ٽ_	· · · · ·		-

53

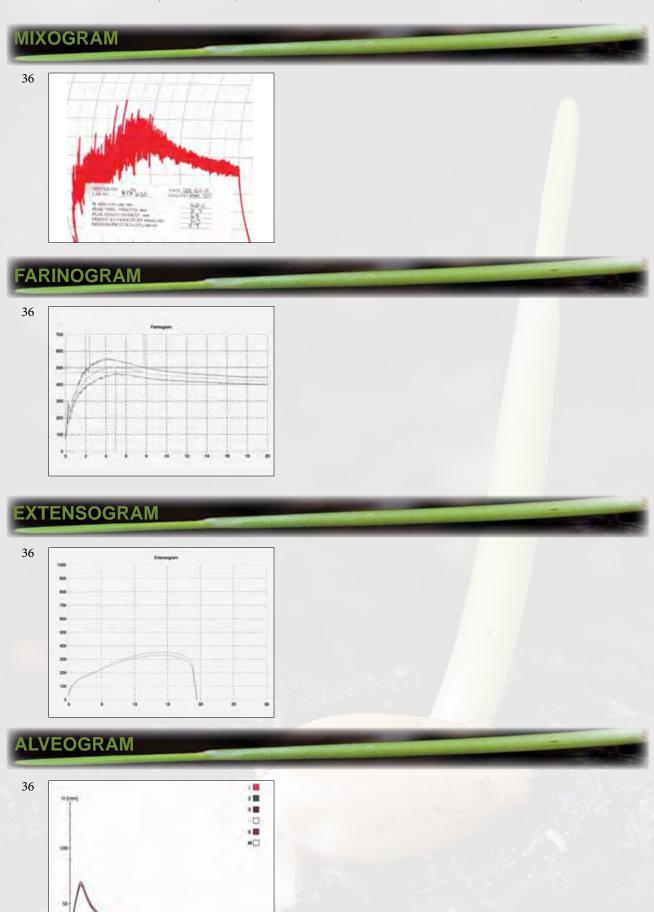

South African Quality data per production region summer RAINFALL AND IRRIGATION WHEAT

PRODUCTION REGION	(26) Free St South-I	ate Eastern I	Region				(27) Free Sta Norther	ate 'n Regio	'n			
WHEAT	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.4		9.2	14.7		2.19	12.2		12.0	12.6		0.32
Falling number, sec	290		208	348		55.56	358		324	410		45.54
1000 Kernel mass (13% mb), g	36.0)	32.9	39.8		3.12	40.3		37.7	42.2		2.35
Hectolitre mass (dirty), kg/hl	79.1		75.3	83.7		4.12	79.4		78.3	80.2		1.00
Screenings (<1.8 mm sieve), %	3.01		1.39	6.58		2.11	0.83		0.49	1.38	5	0.48
Total damaged kernels, %	1.03	3	0.38	2.32		0.86	0.41		0.32	0.46	;	0.08
Combined deviations, %	4.79)	1.89	10.72	2	3.64	1.47		1.07	2.26	i	0.69
Number of samples				5						3		
CULTIVARS		FLA	NDS	40	0			PAN	1 3400	2'	1.0	
cultivars			884	22				SST			3.3	
with highest %			3400	9.					087		2.0	
occurrence			3471	8.					356		2.0	
			356	7.					398		2.0	
Number of samples				5			İ			3		
MIXOGRAM (Quadromat Junior)						atday						otdov
Peak time, min	ave 3.4		min 2.8	max 4.2		stdev 0.52	ave 3.3		min 3.1	max 3.4		stdev 0.17
Tail height (6 min), mm	50		44	<u>4.2</u> 57		4.82	54		53	56		1.53
Number of samples				5		4.02	<u> </u>			3	_	1.00
p				-	C0	MPOSIT	E SAMPI	LES			_	
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	72.3	74.2	-	74.0	-	-	73.0	-	-	-	-	-
FLOUR	105						44.5					
Protein (12% mb), %	12.5	10.1	-	8.1	-	-	11.5	-	-		-	-
Ash (db), %	0.53	0.64	-	0.61	-	-	0.60	-	-	-	-	-
Colour, KJ (wet) Colour, Konica Minolta CM5 (dry)	-3.0	-4.5	-	-4.0	-		-3.9	-			-	-
L*	93.08	93.93	-	94.12	-	- I	93.46	-	_		_	
<u>ــــــــــــــــــــــــــــــــــــ</u>	0.42	0.42		0.38			0.44					
b*	10.10	9.37	-	9.32	-	- 1	10.19	-	-	-	-	-
<u></u>		0.01		0.02		1	10110			<u> </u>		
RVA												
Peak Viscosity, cP	2047	2260	-	2185	-	-	2390	-	-	-	-	-
Minimum viscosity (Through), cP	1640	1838	-	1878	-	-	1865	-	-	-	-	-
Final Viscosity, cP	2291	2462	-	2409	-	-	2694	-	-	-	-	-
Peak Time, min	6.93	7.00	-	6.93	-	-	7.00	-	-	-	-	-
GLUTEN Wet gluten (14% mb), %	35.7	28.1		21.4	_		30.2	_				
Dry gluten (14% mb), %	12.0	9.1	-	7.0	-	<u> </u>	10.3	-	-	-	-	-
Gluten Index	96	96	_	97	-	- 1	98	-	-	-	-	_
FARINOGRAM												
Water absorption (14% mb), %	61.1	59.2	-	56.0	-	-	60.8	-	-	-	-	-
Development time, min	7.2	4.8	-	3.2	-	-	6.8	-	-	-	-	
Stability, min Mixing tolerance index, BU	10.1 31	5.7 51	-	6.2 46			11.6 25	-	-	<u> -</u>	-	-
EXTENSOGRAM (45 min pull)	31	51	-	40	-	-	25	-	-	-	-	
Area, cm ²	110	84	-	62	-	-	122		-	-	-	-
Maximum height, BU	408	325	-	312	-	-	426	-		-	-	
Extensibility, mm	197	182	-	139	-	-	207	-	-	-	-	-
ALVEOGRAM Strength (S), cm ²	46.5	31.2	_	18.8	_	-	46.6	-	-		_	
Stability (P), mm	88	70		62		-	90	-	-		-	
Distensibility (L), mm	115	115	-	69	-		117				-	<u> </u>
Configuration ratio (P/L)	0.77	0.61	-	0.90			0.77	-				
		0.01	1	0.00			0.11					
MIXOGRAM		1							1			
Peak time, min	2.9	2.8	-2	3.2	-	-	2.9	-	-		-	-
100g BAKING TEST Loaf volume, cm ³	1117	1046		024		_	11.40					
Evaluation (see page 77)	<u>1117</u> 0	1046 0	-	921 0	-		1142 0	-	-			
Evaluation (see page 11)	0	0		0			0	-				

55


SUMMER RAINFALL AN		AHOr	N VVFIE	241			IRRIC	JAHO	NVH	EAI		
PRODUCTION REGION	(28) Free St Easterr	ate n Region					(33) Mpuma Northe	ılanga rn Regio	'n			
14/1/5 A.T.												
WHEAT	ave		min	max		stdev	ave		min	may		stdev
Protein (12% mb), %	12.7		8.8	14.6		1.49	11.8		10.7	max 12.4		0.52
Falling number, sec	272		89	407		84.83	368		326	461		34.10
1000 Kernel mass (13% mb), g	40.1		36.8	47.8		3.37	39.5		37.4	41.9		1.28
Hectolitre mass (dirty), kg/hl	79.3		75.5	82.1		2.42	83.7		82.9	84.7		0.70
Screenings (<1.8 mm sieve), %	0.79		0.03	3.12		0.80	1.16		0.67	1.55		0.36
Total damaged kernels, %	2.08	3	0.16	12.8		3.53	0.60		0.16	0.92		0.24
Combined deviations, %	3.72	2	0.35	14.2	6	4.05	2.07	,	1.72	2.56		0.28
Number of samples			1	12					1	11		
CULTIVARS			10464	2	4.4			0.01	004	41		
cultivars			3161 884		4.1 4.0				884		.4	
with highest %			875).8				895			
occurrence			1 3111).8			DUZ			.0	
coourience			347		.3				835		.5	
Number of samples				<u>,</u> 12						11		
MIXOGRAM (Quadromat Junior)			min	me		stdov			min	me		etdov
Peak time min	ave 3.0		min 2.3	max 3.6		stdev	2.9		min 2.7	max 33		stdev 0.18
Peak time, min Tail height (6 min), mm	49		37	<u>3.6</u> 57		0.38	2.9		45	3.3 51		2.05
Number of samples	+3			12		0.00	+3			11		2.00
					CO	MPOSIT	ESAMP	LES				
CLASS AND GRADE	B1	B2	B3	B4	UT	COW	B1	B2	B3	B4	UT	COW
Bühler Extraction, %	72.9	73.6	-	-	71.4	-	73.4	74.1	73.3	-	-	-
FLOUR												
Protein (12% mb), %	11.8	10.3	-	-	11.1	-	11.2	10.5	9.5	-	-	-
Ash (db), %	0.61	0.62	-	-	0.60	-	0.64	0.65	0.69	-	-	-
Colour, KJ (wet)	-3.5	-4.0	-	-	-3.1	-	-4.0	-4.1	-4.5	-	-	-
Colour, Konica Minolta CM5 (dry)	00.40				00.05		00.40	00.45	00.70			
<u>L*</u>	93.13	93.60	-	-	93.05	-	93.48	93.45	93.76	-	-	-
<u>a*</u>	0.41	0.39 9.16	-	-	0.38	-	0.51 9.85	0.54 9.94	0.54 9.63	-	-	-
<u>D</u>	9.02	9.10		-	10.23		9.05	9.94	9.03			-
RVA												
Peak Viscosity, cP	1605	2243	-	-	1047	-	2282	2357	2652	-	-	-
Minimum viscosity (Through), cP	1405	1763	- 1	-	812	- 1	1975	1831	2055	-	-	-
Final Viscosity, cP	1749	2486	-	-	1194	-	2512	2633	2973	-	-	-
Peak Time, min	6.67	7.00	-	-	6.07	-	6.47	7.00	7.00	-	-	-
GLUTEN												
Wet gluten (14% mb), %	32.5	28.8	-	-	30.0	-	31.0	28.7	25.5	-	-	-
Dry gluten (14% mb), %	11.1	9.5	-	-	10.1	-	10.2	9.8	8.5	-	-	-
Gluten Index	92	95	-	-	92	-	92	93	96	-	-	-
FARINOGRAM												
Water absorption (14% mb), %	62.7	60.9	-	-	60.7	-	61.0	59.1	58.0	-	-	-
Development time, min	5.5	4.8	-	-	5.2	-	5.2	5.3	3.7	-	-	-
Stability, min	6.6	6.4	- 74 - X	-	7.3	-	8.0	7.0	6.3	-	-	-
Mixing tolerance index, BU	45	46	- 14	-	45	-	35	42	41	-	-	-
EXTENSOGRAM (45 min pull)			1					7				
Area, cm ²	99	83	-//	-	93	-	106	98	84	-	-	-
Maximum height, BU	350	321	-	-	395	-	414	386	369	-	-	-
Extensibility, mm	204	185	-	-	170	-	190	185	164	-	-	-
		1										340
ALVEOGRAM Strength (S), cm ²	41.3	32.7		-	35.3		38.8	31.0	30.3	-	_	
Stability (P), mm	95	89		-	92		89	84	83		-	1
Distensibility (L), mm	95	81		-	81		95	77	79			
Configuration ratio (P/L)	1.00	1.10	-	-	1.14	-	0.94	1.09	1.05	-	-	-
			10				5.51					
MIXOGRAM		/							3.000			
Peak time, min	2.5	2.8	-2	-	2.9	-	2.8	2.8	3.1	-	-	-
- Carl States of the States of the	16		2/3									
100g BAKING TEST												
Loaf volume, cm ³	1103	902	-	-	1016	-	1071	1081	910	-	-	-
Evaluation (see page 77)	0	0	-	-	0	-	0	0	0	-	-	-

South African Wheat Crop Quality Report 2017/2018 Season


57

	(34)						(35)					
PRODUCTION REGION		g Regio	n					o Regio	n			
WHEAT	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	12.4		-	-		-	11.3		9.3	13.5		1.36
Falling number, sec	363		-	-		-	366		339	424		26.04
1000 Kernel mass (13% mb), g	38.2		-	-		-	39.4		30.7	46.3		6.48
Hectolitre mass (dirty), kg/hl	81.5		-	-		-	83.5		80.4	84.9		1.59
Screenings (<1.8 mm sieve), % Total damaged kernels, %	1.34		-			-	0.70		0.22	<u> </u>		0.55
Combined deviations, %	2.02		-			-	1.45		0.08	2.17		0.22
Number of samples				1			1.10			8		0.10
CULTIVARS									/			
cultivars			884		3.0 4.0				884 875	41		
with highest %			FANTS		6.0 6.0				843	30		
occurrence			OKODIL		2.0				895	7.		
			-	•	-				3471	3.		
Number of samples				1						8		
MIXOGRAM (Quadromat Junior)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.9		-	-		-	3.1		2.7	3.4		0.26
Tail height (6 min), mm	49		-	-		-	48		42	55		4.55
Number of samples				1						8		
		- Ba	D 2	D4	CO UT		E SAMP		D 2	D4		
CLASS AND GRADE Bühler Extraction, %	B1 73.6	B2 -	B3 -	B4		COW	B1 74.0	B2 73.7	B3 -	B4 73.8	UT -	COW
Barnor Extraorion, 70	10.0		<u> </u>	<u> </u>			1 1.0	10.1		10.0		1
FLOUR												
Protein (12% mb), %	11.2	-	-	-	-	-	12.3	10.9	-	8.8	-	-
Ash (db), %	0.60	-	-	-	-	-	0.66	0.62	-	0.58	-	
Colour, KJ (wet) Colour, Konica Minolta CM5 (dry)	-4.3	-	-	-	-	-	-4.2	-4.4	-	-4.6	-	-
L*	93.66	-	-	-	-	-	93.44	93.68	-	94.05	-	-
a*	0.41	-	-	-	-	-	0.54	0.51	-	0.40	-	-
b*	9.02	-	-	-	-	-	10.18	9.90	-	9.11	-	-
RVA												
Peak Viscosity, cP	1748	_	-	-	-	-	2251	2317	-	2706	-	-
Minimum viscosity (Through), cP	1503	-	-	-	-	-	1569	1881	-	2169	-	-
Final Viscosity, cP	1896	-	-	-	-	-	2502	2601	-	3033	-	-
Peak Time, min	6.67	-	-	-	-	-	7.00	7.00	-	7.00	-	-
GLUTEN												
Wet gluten (14% mb), %	31.3	-	-	-	-	-	34.6	29.4	- 1	23.1	-	-
Dry gluten (14% mb), %	10.2	-	-	-	-	-	11.6	9.9	-	7.8	-	-
Gluten Index	95	-	-	-	-	-	92	97	-	96	-	-
FARMOORAN												
FARINOGRAM Water absorption (14% mb), %	60.1		-	_			62.4	59.8	_	56.2		
Development time, min	5.2	-		-	-		6.7	5.3	-	4.3		-
Stability, min	7.2	-		-	-	-	8.9	6.5	-	6.2	-	- 1
Mixing tolerance index, BU	45	-		-	-	-	31	48	-	52	-	
EXTENSOGRAM (45 min pull) Area, cm ²	109			-			149	96	-	76		
Maximum height, BU	382	-		-	-	-	468	380	-	351		
Extensibility, mm	208	-	-	-	-	-	234	187	-	156	-	-
												994
ALVEOGRAM		1										
Strength (S), cm ²	40.7	-	•	-	-	-	50.2	37.2	-	30.3	-	-
Stability (P), mm Distensibility (L), mm	75	-	-	-	-	-	92 124	85 98	-	72 103	-	<u> </u>
Configuration ratio (P/L)	0.57		-	-		-	0.74	98 0.87		0.70		
	0.01		1				5.14	5.57		0.10		
MIXOGRAM		/							1.000			
Peak time, min	2.8	-	-7	-	-	-	2.7	2.8	-	2.9	-	-
	16		18									
100g BAKING TEST Loaf volume, cm ³	1076	_			_	-	1129	1073		941		
Evaluation (see page 77)	0	<u> </u>	-			<u> </u>	0	0		0		-
						· · · · · · · · · · · · · · · · · · ·						

59

PRODUCTION REGION	(36) KwaZu	lu-Natal	Region				
WHEAT	ave		min	max		stdev	
Protein (12% mb), %	12.4		11.7	13.2		0.54	
Falling number, sec	410		263	473		65.30	
1000 Kernel mass (13% mb), g	36.8		34.4	43.4		2.94	
Hectolitre mass (dirty), kg/hl	83.4		81.6	85.3		1.44	
Screenings (<1.8 mm sieve), %	1.33		0.61	2.05		0.41	
Total damaged kernels, %	0.25		0.10	0.48		0.13	
Combined deviations, %	1.96	j	1.23	2.59		0.39	
Number of samples				9			
CULTIVARS							
		SST	875	42	2.1		
cultivars			835		.4		
with highest %		SST	884	18	3.1		
occurrence			895	6			
	<u> </u>	PAN	3471		.9		
Number of samples				9			
MIXOGRAM (Quadromat Junior)							
	ave		min	max		stdev	
Peak time, min	2.7		2.2	3.2		0.31	
Tail height (6 min), mm	48		45	51		1.83	
Number of samples				9			
		·	OMPOSI			<u> </u>	
CLASS AND GRADE	B1	B2	B3	B4	UT	cow	
Bühler Extraction, %	74.8	74.8	-	-	-	<u> </u>	
FLOUR							
Protein (12% mb), %	11.9	10.6	-	-	-	- I	
Ash (db), %	0.60	0.57	-	-	-	<u> </u>	
Colour, KJ (wet)	-4.2	-4.1	-	-	-	<u> </u>	
Colour, Konica Minolta CM5 (dry)	1					<u> </u>	
<u>L*</u>	93.79	93.88	-	-	-	-	
a*	0.43	0.41	-	-	-	-	
b*	9.22	9.11	-	-	-	<u> </u>	
RVA Peak Viscosity, cP	2311	1685					
Minimum viscosity (Through), cP	1671	1488	-	-	-		
Final Viscosity, cP	2576	1846	-	-	_		
Peak Time, min	7.00	6.87	-	-	-	<u> </u>	
						<u> </u>	
GLUTEN							
Wet gluten (14% mb), %	33.6	28.7	-	-	-	<u> </u>	
Dry gluten (14% mb), %	11.9	9.8	-	-	-	<u> </u>	
Gluten Index	84	95	-	-	-	<u> </u>	
FARINGCRAM							
FARINOGRAM Water absorption (14% mb), %	60.7	59.1	-	-			
Development time, min	5.0	5.3		-	-		
Stability, min	5.4	6.0		-	-	· ·	
Mixing tolerance index, BU	50	53	-	-	-	-	
EXTENSOGRAM (45 min pull)			1				
Area, cm ²	91	91		-	-	<u> </u>	
Maximum height, BU	333	341	-	-	-	<u> </u>	
Extensibility, mm	198	195	-	-	-	<u> </u>	
ALVEOGRAM							
Strength (S), cm ²	36.1	36.3		-	-	-	
Stability (P), mm	75	69		-	_	1.	
Distensibility (L), mm	123	141	-	-	-	<u> </u>	
Configuration ratio (P/L)	0.61	0.49	-	-	-	-	
			19				
MIXOGRAM	1.2.2	/					
Peak time, min	2.3	2.6	- /	-	-		
			12				
100g BAKING TEST Loaf volume, cm ³	1160	1116					
Evaluation (see page 77)	1169 0	0	-	-		<u> :</u>	
E valuation (occ page //)							

Mycotoxins

Mycotoxins, toxic chemical compounds produced by moulds, can contaminate commodities either in the field or during storage and are invisible, odourless and tasteless. The only proven way to determine whether grain, cereals, feed or food are contaminated, is by analytical testing. According to the Food and Agriculture Organization, food losses due to mycotoxin contamination are estimated at 25% on a global scale and pose a real threat to food security, especially in Africa where the magnitude of losses is difficult to estimate because of a lack of information.

Mycotoxin production is foremost a food safety issue, although the occurrence of moulds can also lead to damage ranging from rancidity, odour, flavour changes, loss of nutrients and germ layer destruction resulting in a reduction in quality. Most mycotoxins are toxic in very low concentrations so this requires sensitive and reliable methods for their detection.

Effective management to prevent food losses or adverse health effects as a result of long-term exposure to contaminated food is only possible when adequate reliable testing data is available. Well-timed interventions in the food and feed value chain can then be based on these testing results.

The accredited multi-mycotoxin assessments included in the annual wheat crop quality survey for the past eight seasons, provide the most comprehensive overview of the multi-mycotoxin risk in commercial wheat produced and delivered to commercial grain storage companies in South Africa. Approximately 10 - 20% of the wheat crop samples were selected every season to proportionally represent all the production regions.

The absence of Aflatoxin B1, B2, G1, G2, Fumonisin B1, B2, B3, Ochratoxin A, Zearalenone, T2-toxin and HT-2 toxin in the wheat samples over the past seven seasons were confirmed in the 2017/2018 season. The Deoxynivalenol residue levels measured, were all well below national and international maximum residue levels.

Constant monitoring and continued research on the prevention and mitigation of mycotoxin contamination are necessary. Application of good agricultural practices and storage conditions as well as effective mycotoxin risk management programs are essential elements in preventing the negative effects of mycotoxins.

National Mycotoxin Regulations

According to the Foodstuffs, Cosmetics and Disinfectants Act (Act 54 of 1972) and regulations published under Government Notice No. R. 1145, dated 8 October 2004, all foodstuffs, ready for human consumption, may not contain more than 10 μ g/kg of aflatoxin, of which aflatoxin B1 may not exceed 5 μ g/kg.

Amendments to Government Notice No. R. 1145, dated 8 October 2004, published under Government Notice No. 987 of 05 September 2016, specify that:

- Cereal grains (wheat, maize and barley) intended for further processing, may not contain more than $2\,000\,\mu g/kg$ of Deoxinyvalenol.
- Flour, meal, semolina and flakes derived from wheat, maize or barley, ready for human consumption, may not contain more than 1 000 μ g/kg of Deoxinyvalenol.

Further processing means any other treatment or processing method that has been proven to reduce levels of fungus produced toxins in foodstuffs intended for human consumption.

International Mycotoxin Regulations

The Maximum, advisory and guidance levels for mycotoxins on cereals from the European Union, USA, China and Codex are provided below for comparison purposes.

The European Union specifies the following maximum levels for mycotoxins on cereals and specifically wheat:

Aflatoxins

- All cereals and all products derived from cereals, including processed cereal products, with the exception of maize, rice, processed cereal-based foods for infants and young children and dietary foods for special medical purposes intended specifically for infants, $B_1 \leq 2.0 \ \mu g/kg$.
- All cereals and all products derived from cereals, including processed cereal products, with the exception $\frac{62}{62}$

of maize, rice, processed cereal-based foods for infants and young children and dietary foods for special medical purposes intended specifically for infants, sum of $B_1 + B_2 + G_1 + G_2 \le 40 \mu g/kg$.

Ochratoxin A

- Unprocessed cereals, $\leq 5.0 \ \mu g/kg$.
- All products derived from unprocessed cereals, including processed cereal products and cereals intended for direct human consumption with certain exceptions (see full regulation), $\leq 3.0 \,\mu$ g/kg.

Deoxynivalenol

- Unprocessed cereals other than durum wheat, oats and maize, ≤ 1 250 µg/kg.
- Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human consumption, with the certain exceptions (see full regulation) ≤ 750 µg/kg.
- Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals, \leq 500 µg/kg.

Zearalenone

- Unprocessed cereals other than maize $\leq 100 \ \mu g/kg$.
- Cereals intended for direct human consumption, cereal flour, bran and germ as end product marketed for direct human consumption and the germ with certain exceptions (see full regulation) \leq 75 µg/kg.
- Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals, excluding maize-snacks and maize-based breakfast cereals, $\leq 50 \,\mu g/kg^{(1)}$

T-2 and HT-2 toxin

- Unprocessed cereal wheat, rye and other cereal, indicative level 100 µg/kg.
- Cereal grains for direct human consumption cereals other than oats and maize, indicative level 50 µg/kg.
- Cereal products for human consumption cereal milling products other than oat and maize, indicative level 50 μg/kg.
- Cereal products for human consumption breakfast cereals including formed cereal flakes, indicative level 75 μg/kg.
- Cereal products for human consumption bread (including small bakery wares), pastries, biscuits, cereal snacks, pasta, indicative level 25 μg/kg.
- Cereal products for human consumption cereal-based foods for infants and young children, indicative level 15 μ g/kg.⁽²⁾

In the USA, the Food and Drug Administration (FDA) actions levels for Aflatoxin for all commodities intended for human consumption is 20 μ g/kg (excluding Aflatoxin M1 in milk where the maximum level is 0.5 μ g/kg). Advisory maximum levels for DON in finished wheat products intended for human consumption is 1 000 μ g/kg.⁽³⁾

In China the maximum level for Aflatoxin B₁ in wheat is 5.0 μ g/kg. The maximum level for DON in cereals and their products including wheat and wheat meal is 1 000 μ g/kg. Ochratoxin A in cereals and processed products of milled grains may not exceed 5.0 μ g/kg and Zearalenone in wheat flour may not exceed 60 μ g/kg.⁽⁴⁾

According to Codex, Ochratoxin A in raw wheat may not exceed 5 μ g/kg and the proposed maximum level for DON is 2 mg/kg in raw wheat and 1 mg/kg in flour, semolina, meal and flakes derived from wheat.⁽⁵⁾

References:

- 1. COMMISSION REGULATION (EC) No 1881/226 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.
- 2. COMMISSION RECOMMENDATION of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products.
- 3. FDA Mycotoxin Regulatory Guidance, A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters, August 2011.
- 4. National Food Safety Standard, Maximum Levels of Mycotoxins in Foods, GB 2761-2017.
- 5. CODEX General Standard for contaminants and toxins in food and feed, CODEX STAN 193-1995, Revised in 1997, 2006, 2008, 2009, Amended 2009.

				lable	0	I ycoto	XIN re	SUIUS I	Mycotoxin results for the 201//201	8102//1	season			
			Aflatoxi	Aflatoxin (μg/kg)		Fun	Fumonisin (µg/kg)	(kg)	Deoxynivalenol	15-ADON	Ochratoxin A	Zearalenone	HT-2 Toxin	T-2 Toxin
Doriou	Class and	\mathbf{B}_1	${f B}_2$	Gı	G_2	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Inegion	Grade								ТОО					
		5 μg/kg	5 μg/kg	5 μg/kg	5 μg/kg	20 μg/kg	20 μg/kg	20 µg/kg	100 µg/kg	100 µg/kg	5 μg/kg	20 μg/kg	20 μg/kg	20 μg/kg
1	UT	ND	ND	ΠŊ	ΠŊ	ΠN	ND	ΠŊ	ΠN	ΟN	ΟN	ΠN	ND	ND
2	B1	ND	ND	ND	ΠD	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	UT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	B1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	B2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	B3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	B4	ND	ND	ND	ND	ΟN	ND	ND	ND	ND	ND	ΠN	ND	ND
4	B1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	B3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	UT	ND	ND	ND	ND	ΟN	ND	ND	ND	ND	ND	ND	ND	ND
5	B1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	B2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	B3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	UT	ŊŊ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	B1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	B2	ŊŊ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	UT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	B1	ŊŊ	ND	ND	ΟN	ND	ND	ΟN	ND	ND	ND	ND	ND	ND
10	B1	Q	ND	ND	Q	ND	ND	ŊŊ	ND	ND	ND	ND	ND	ND
10	B3	ND	ND	ND	Ŋ	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	UT	ND	ND	ND	QN	ND	ND	DN	174	ND	ND	ND	ND	ND
12	B1	ND	ND	ND	Q	ND	ND	ŊŊ	ND	ND	ND	ND	ND	ND
14	B1	ND	ND	ND	QN	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	B1	ND	ND	ND	QN	ND	ND	DN	ND	ND	ND	ND	ND	ND
16	B2	ŊŊ	ND	ND	ŊŊ	ND	ND	ŊŊ	116	ND	ND	ND	ND	ND
17	B1	ND	ŊŊ	ND	ŊŊ	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	B1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	B4	ŊŊ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	B2	ŊŊ	ŊŊ	ND	ŊŊ	ND	ND	ŊŊ	<100	ŊŊ	ŊŊ	ND	ND	ND
21	B1	QN	QN	ND	ND	ND	ND	ND	124	QN	ND	ND	ND	ND

Table 6: Mycotoxin results for the 2017/2018 sea

	F	
	HT-2 Toxin	
nue)	Zearalenone	
n (conti	Ochratoxin A	
18 season	15-ADON	
2017/2018	Deoxynivalenol	
oxin results for the	Fumonisin (μg/kg)	
Fable 6: Mycot	Aflatoxin (μg/kg)	

			Aflatoxir	Aflatoxin (μg/kg)		Fur	Fumonisin (µg/kg)	/kg)	Deoxynivalenol	15-ADON	Ochratoxin A	Zearalenone	HT-2 Toxin	T-2 Toxin
Darion	Class and	\mathbf{B}_1	\mathbf{B}_2	G	G_2	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Incgioii	Grade								LOQ					
		5 μg/kg	5 μg/kg	5 μg/kg	5 μg/kg	20 µg/kg	20 μg/kg	20 μg/kg	100 μg/kg	100 μg/kg	5 μg/kg	20 µg/kg	20 μg/kg	20 μg/kg
22	B2	ND	ΠŊ	ND	ND	ND	ND	ND	<100	ND	ΠN	ND	ND	ND
23	B1	ND	ΠD	ΠD	ND	ΠN	ND	ΟN	ND	ND	ΠN	ND	ND	ND
24	B1	ND	ΠD	ΠD	ND	ΠŊ	ND	ND	ND	ND	ΠN	ND	ND	ND
26	B1	ND	ND	ΟN	ND	ND	ND	ND	ND	ND	ΠN	ND	ND	ND
27	B1	ND	ΠŊ	ΟN	ND	ΠŊ	ND	ND	ND	ND	ΠN	ND	ND	ND
28	B1	ND	ND	ND	ND	ND	ND	ND	123	ND	ND	ND	ND	ND
33	B1	ND	ND	ΟN	ND	ΠŊ	ND	ND	199	ND	ΠN	ND	ND	ND
33	B2	ND	ΟN	ND	ND	ΠN	ND	ND	570	ND	ΠN	ND	ND	QN
35	B2	ND	ND	ND	ND	ND	ND	ND	109	ND	ND	ND	ND	ND
36	B1	ND	ND	ND	ND	ND	ND	ND	<100	ND	ND	ND	ND	ŊŊ
Total nu sam	Total number of samples	40	40	40	40	40	40	40	40	40	40	40	40	40
Average number c	Average of total number of samples	0	0	0	0	0	0	0	35	0	0	0	0	0
Number or res	Number of positive results	0	0	0	0	0	0	0	7	0	0	0	0	0
Average o res	Average of positive results					-	-	-	202	-	-	-		ŗ
Maximum res	Maximum of positive results								570	-	-			

Note:

Limit of quantitation (LOQ) means the lowest concentration level that can be quantified with acceptable presicion and accuracy by the UPLC-MS/MS. A concentration measured below the LOQ is reported as <LOQ. .

Limit of detection (LOD) is the lowest concentration level that can be detected but not quantified and is 50% of the LOQ of each mycotoxin. A concentration measured below the LOD is reported as not detected (ND).

Mycotoxin levels lower than the LOQ were seen as tested negative for calculation purposes.

 $\mu g/kg = ppb$ (parts per billion)

Amino Acid Profile

Amino acids are the building blocks of proteins and approximately 22 amino acids are commonly distributed among the proteins of all biological materials. Of these, 18 can be found in cereal grain proteins. Amino acids are organic compounds containing basic amine (-NH2) and acidic carboxyl (-COOH) functional groups, in addition to a side chain (R group) specific to each amino acid.

Amino acid composition is an important feature in determining the nutritional value of wheat for human and animal diets. Amino acids are considered crucial to good health, contributing considerably to the health of the human nervous system, hormone production as well as muscular structure and are needed by vital organs and for cellular structure.

The classification of amino acids is based on different features, one being whether the amino acid can be acquired through the diet. According to this, three types are identified: essential, conditionally essential and non-essential amino acids. Classification as essential or non-essential, does however not reflect their actual importance, since all of them are necessary for human health. Essential amino acids are considered "essential" as they cannot be synthesized by the body and must be obtained from the diet. The nine essential amino acids are phenylalanine, valine, threonine, tryptophan, methionine, leucine, isoleucine, lysine and histidine. Arginine, cysteine, glycine, glutamine, proline and tyrosine, are considered conditionally essential in the human diet, meaning their synthesis can be limited under special pathophysiological conditions. Alanine, aspartic acid, asparagine, glutamic acid and serine are non-essential amino acids, meaning they can be synthesized by the body.^(1,2)

Whole meal and white flours from different classes and varieties of wheat grown in three different countries (USA, USSR and Australia) show generally similar amino acid compositions, with high contents of glutamic acid (including glutamine) and proline, very low tryptophan, and relatively low contents of lysine and threonine. Compared with the range of variation in the protein contents of these samples, the variation in their amino acid compositions resulting either from genetic differences or growing conditions such as fertilizer level is rather limited. The reason being that the amino acid compositions of the major endosperm proteins, representing close to 80% of the total wheat proteins, are very similar. Differences in the expression of levels of individual protein genes therefore do not usually result in significant differences in the amino acid compositions of the samples.

Significant variation in amino acid composition may however occur in extreme cases. Research showed that lysine and threonine were for example higher in yellow-berry kernels compared to normal kernels, while glutamic acid (including glutamine) was significantly lower. Extreme differences in fertilization conditions may also result in significant variation in the compositions of whole grain flour or specific protein fractions. It has been found that the proportions of glutamine, proline and phenylalanine in wheat grain and flour all increased with increased levels of nitrogen fertilization, whereas threonine, serine, glycine, alanine, valine and sulphur amino acids decreased.

In a study where wheat was grown under even more extreme fertilization conditions, with variation in nitrogen and sulphur, the grain amino acid composition changed significantly. Less than half of the amounts of cysteine and methionine were present in grain grown with no sulphur and high nitrogen levels compared to grain grown with adequate levels of sulphur.

Proteins are not distributed uniformly throughout a wheat kernel with variation occurring in both the protein content and composition. Even though the starchy endosperm's protein concentration is only a third of that in the germ and less than half of that in the aleurone layer, the starchy endosperm proteins still represent close to three quarters of the total grain protein. The starchy endosperm is characterized by high levels of glutamine and proline and low levels of basic amino acids, while the aleurone and germ contain significantly less proline and glutamine, with high levels of arginine and asparagine in the aleurone layer and germ, respectively. Since the various morphological parts of the wheat kernel differ in protein content and composition, milling extraction rates affect the content and composition of flour.

A large number of flour fractions or mill streams are produced during commercial flour milling which are recombined to provide flours with specific processing characteristics. As a result of the irregular distribution of components within the wheat kernel, these flour streams also vary in their composition and functional properties.

The amino acid compositions of flours differ from those of the grains from which they were milled in containing less lysine, arginine, aspartate (+ asparagine), glycine and alanine but more glutamate (+ glutamine) and proline. Analyses of manually dissected pericarp, testa, aleurone, starchy endosperm and germ suggest that these differences in composition result from differences in the distribution of protein classes throughout the wheat kernel, for example the proportions of basic amino acids increase and the nitrogen content decreases from the outside towards the centre of the endosperm.⁽³⁾

Due to the fact that cystine consists of two cysteine molecules, joined by a disulfide (S-S) bond, cysteine and cystine are interchangeable in wheat. The ratio of cysteine to cystine is dependent on the degree of oxidation in a dough. Addition of an oxidizing agent, such as ascorbic acid, will increase the amount of cystine at the expense of cysteine. This has a "strengthening" effect on the gluten by increasing its elasticity.⁽²⁾

The results of the samples analysed by SAGL and reported as g amino acid/100 g sample, are provided in Table 7 on pages 68 and 69. The values obtained for all amino acids on these samples, were within the normal range reported for wheat in literature, deficient in certain essential amino acids, such as tryptophan, lysine, threonine, methionine and histidine, but high in glutamic acid and proline, which is not essential.

Due to the fact that protein and amino acid composition of wheat varies with crop varieties, application of fertilizers, irrigation practices, soil composition and climatic conditions, the amino acid content showed a wide variation between samples. The only exception being tryptophan, ranging from 0.14 to 0.17 g/100 g this season and between 0.13 to 0.19 g/100 g the previous season. Tryptophan is nutritionally important since it is a precursor for important metabolites such as serotonin and nicotinamide. The World Health Organisation's (WHO) recommended daily dose for tryptohan is 4 mg/kg/day.⁽⁴⁾

Lysine values varied between 0.33 and 0.44 g/100 g, comprising $\pm 2.4 - 3.2$ % of the total amino acid content. Lysine is the precursor for carnitine and is required for the structural modification of collagen together with the amino acids glycine and proline.⁽¹⁾ The WHO recommended daily dose for lysine is 30 mg/kg/day. Threonine's WHO recommended daily dose is 15 mg/kg/day⁽⁴⁾ and ranged from 0.35 to 0.52 g/100 g this season and from 0.32 to 0.54 g/100 g the previous season. Threonine supports digestive function, the immune system, liver and cardiovascular function as well as the central nervous system.⁽⁵⁾

Methionine values were higher this season than during the previous season, ranging from 0.22 to 0.37 g/100 g, compared to 0.18 and 0.26 g/100 g previously. The WHO daily recommendation is 15 mg/kg/day for the sulphur containing amino acids in total.⁽⁴⁾ The main functions of methionine include building of various protein molecules and the synthesis of the equally important sulphurous amino acid, cysteine.⁽⁵⁾

The values for histidine varied between 0.26 and 0.39 g/100 g and comprises $\pm 2.1 - 2.3$ % of the total amino acid content. Histidine is involved in the formation of proteins, it influences several of the metabolic reactions in the body and assists in regulating blood pH values. The results also showed that the samples were high in the essential amino acid leucine, with values ranging from 0.43 to 1.20 g/100 g. Phenylalanine values varied between 0.53 and 0.88 g/100 g.

The results showed that the samples were rich in glutamic acid and proline, together contributing \pm 42% of the total amino acid content. Glutamic acid contributes to the health of the immune and digestive systems, as well as energy production. Proline is a non-essential amino acid manufactured mainly from ornithine, glutamine and glutamate in the liver and is one of the principal amino acids required by the body for building collagen.⁽⁵⁾

References:

- Richard D. Semba, Michelle Shardell, Fayrouz A. Sakr Ashour, Ruin Moaddel, Indi Trehan, Kenneth M. Maleta, M. Isabel Ordiz, Klaus Kraemer, Mohammed A. Khadeer, Luigi Ferrucci, Mark J. Manary. (2016). Child Stunting is Associated with Low Circulating Essential Amino Acids. EbioMedicine (6), page 246-252.
- 2. Williams, P. 2011. A Practical Introduction to Cereal Chemistry. First Choice Books, page 4-19.
- 3. Khan, K. and Shrewry, P.P. Eds. 2009. Wheat Chemistry and Technology. 4th Ed: Chapter 8.
- 4. World Health Organization. Protein and amino acids requirements in human nutrition: report of a joint FAO/ WHO/UNU expert consultation, Teck. Rep. Series no 935, World Health Organization, Geneva, Switzerland 2007.
- 5. http://aminoacidstudies.org

regions	
production r	
different	
g from	
iginating	
s or	
it sample	
f whea	
content o	
no acid c	
Amine	
Table 7:	

										I							I		I				I
	Phenyl- alanine		0.59	0.85	0.58	0.83	0.82	0.67	0.88	0.73	0.57	0.76	0.59	0.85	0.54	0.63	0.68	0.59	0.65	0.65	0.68	0.54	0.54
	Leucine		0.87	1.16	0.86	1.16	1.13	0.97	1.20	1.08	0.84	1.00	0.86	0.43	0.80	0.91	0.96	0.87	0.95	0.93	1.02	0.80	0.80
	Isoleucine		0.43	0.60	0.44	0.58	0.57	0.48	0.60	0.55	0.43	0.51	0.43	0.43	0.40	0.46	0.47	0.43	0.47	0.46	0.51	0.39	0.41
	Valine	-	0.57	0.76	0.58	0.73	0.71	0.62	0.76	0.67	0.58	0.68	0.57	0.56	0.53	0.59	0.60	0.56	0.61	0.60	0.64	0.51	0.54
	Tyrosine	-	0.32	0.34	0.23	0.36	0.40	0.31	0.43	0.33	0.23	0.28	0.30	0.27	0.26	0.29	0.29	0.29	0.29	0.29	0.31	0.26	0.22
	Lysine	-	0.36	0.44	0.35	0.44	0.43	0.39	0.44	0.41	0.36	0.39	0.36	0.35	0.34	0.36	0.38	0.34	0.37	0.37	0.40	0.33	0.34
	Proline		1.39	1.83	1.31	1.87	1.78	1.53	2.03	1.64	1.30	1.64	1.28	1.27	1.17	1.40	1.55	1.28	1.50	1.46	1.53	1.18	1.22
	Alanine	-	0.47	0.56	0.45	0.56	0.54	0.50	0.58	0.52	0.45	0.52	0.45	0.44	0.42	0.46	0.48	0.44	0.48	0.47	0.51	0.43	0.43
Acid	Threonine	as is)	0.40	0.48	0.39	0.49	0.48	0.44	0.52	0.46	0.39	0.45	0.39	0.38	0.36	0.41	0.42	0.38	0.42	0.40	0.43	0.36	0.36
Amino Acid	Glutamic acid	g/100g (as is)	4.23	5.31	3.97	5.52	5.08	4.66	5.88	4.90	3.93	4.63	3.91	3.96	3.65	4.24	4.59	3.89	4.49	4.43	4.70	3.72	3.77
	Aspartic acid	-	0.67	0.86	0.64	0.81	0.80	0.74	0.83	0.77	0.65	0.77	0.65	0.65	0.61	0.66	0.72	0.65	0.69	0.69	0.76	0.62	0.61
	Glycine	•	0.57	0.69	0.54	0.69	0.68	0.63	0.75	0.66	0.55	0.64	0.54	0.54	0.39	0.57	0.61	0.53	0.59	0.59	0.64	0.52	0.53
	Arginine	-	0.58	0.70	0.53	0.68	0.69	0.62	0.73	0.67	0.53	0.62	0.56	0.52	0.68	0.57	0.56	0.54	0.56	0.57	0.63	0.52	0.50
	Serine	-	0.66	0.84	0.63	0.84	0.83	0.73	0.89	0.78	0.63	0.75	0.62	0.63	0.58	0.67	0.71	0.63	0.70	0.67	0.74	0.59	0.59
	Histidine		0.30	0.38	0.29	0.37	0.36	0.32	0.39	0.35	0.29	0.33	0.29	0.28	0.27	0.30	0.31	0.28	0.31	0.31	0.33	0.27	0.27
	Cystine	-	0.41	0.45	0.43	0.42	0.38	0.39	0.48	0.41	0.38	0.39	0.40	0.34	0.37	0.41	0.38	0.44	0.47	0.39	0.39	0.30	0.36
	Methionine	-	0.29	0.32	0.32	0.37	0.28	0.31	0.34	0.29	0.27	0.29	0.28	0.24	0.28	0.30	0.28	0.26	0.28	0.28	0.28	0.22	0.25
	Tryptophan Methionine		0.15	0.14	0.16	0.16	0.17	0.17	0.14	0.16	0.15	0.17	0.15	0.15	0.14	0.15	0.15	0.15	0.16	0.16	0.16	0.14	0.16
	Grade ¹		UT	B1	UT	B4	B2	B1	B3	B1	B3	UT	UT	B2	B3	B1	B1	B2	UT	B2	B1	B3	UT
	Region		1	2	2	3	3	3	3	4	4	4	5	5	S	5	6	6	6	10	10	10	11

Table 7: Amino acid content of wheat samples originating from different production regions (continue)

										(amin									
Region	Grade	Tryptophan	Tryptophan Methionine	Cystine	Histidine	Serine	Arginine	Glycine	Aspartic	Glutamic Thre	Threonine	Alanine	Proline	Lysine	Tyrosine	Valine	Isoleucine	Leucine	Phenyl-
										g/100g (as is)	(as is)								
14	B1	0.15	0.27	0.36	0.32	0.68	0.60	09.0	0.72	4.56	0.41	0.49	1.47	0.36	0.32	09.0	0.47	0.94	0.70
15	B1	0.15	0.28	0.39	0.32	0.71	0.59	0.61	0.76	4.55	0.42	0.50	1.49	0.38	0.25	0.64	0.48	0.96	0.66
16	B2	0.15	0.26	0.37	0.30	0.65	0.58	0.58	0.70	4.09	0.39	0.48	1.37	0.43	0.28	0.58	0.46	0.91	0.61
17	B1	0.15	0.35	0.46	0.33	0.73	0.61	0.64	0.77	4.67	0.43	0.52	1.55	0.38	0.30	0.64	0.47	0.94	0.65
19	B1	0.16	0.29	0.39	0.34	0.72	0.59	0.63	0.76	4.81	0.42	0.49	1.58	0.37	0.28	0.64	0.50	0.99	0.71
19	B4	0.15	0.25	0.32	0.26	0.57	0.50	0.52	0.60	3.64	0.35	0.43	1.18	0.34	0.22	0.52	0.39	0.79	0.53
20	B2	0.15	0.27	0.36	0.31	0.66	0.59	0.57	0.68	4.32	0.40	0.47	1.39	0.37	0.29	0.60	0.46	0.91	0.65
21	B1	0.15	0.29	0.41	0.31	0.67	0.57	0.58	0.70	4.50	0.41	0.47	1.44	0.37	0.27	0.61	0.47	0.93	0.66
53 69	B2	0.15	0.28	0.38	0.31	0.66	0.56	0.57	0.72	4.15	0.40	0.48	1.39	0.40	0.28	0.62	0.46	0.94	0.63
23	B1	0.15	0.30	0.43	0.31	0.68	0.59	0.59	0.73	4.40	0.41	0.50	1.43	0.38	0.28	0.61	0.47	0.94	0.65
24	B1	0.15	0.28	0.40	0.30	0.66	0.58	0.58	0.69	4.14	0.40	0.48	1.42	0.36	0.28	0.60	0.45	0.91	0.62
26	B1	0.15	0.28	0.40	0.35	0.77	0.64	0.63	0.77	5.04	0.45	0.53	1.71	0.38	0.33	0.70	0.54	1.08	0.76
27	B1	0.15	0.29	0.40	0.30	0.67	0.59	0.57	0.68	4.31	0.41	0.47	1.42	0.35	0.29	0.59	0.46	0.92	0.64
28	B1	0.15	0.22	0.29	0.33	0.72	0.63	0.64	0.75	4.66	0.43	0.50	1.60	0.38	0.33	0.63	0.48	0.97	0.68
33	B1	0.16	0.27	0.37	0.32	0.68	0.59	0.59	0.71	4.36	0.41	0.48	1.45	0.37	0.29	0.60	0.46	0.95	0.65
33	B2	0.17	0.25	0.35	0.29	0.63	0.56	0.57	0.68	4.09	0.38	0.45	1.34	0.37	0.28	0.56	0.43	0.87	0.61
35	B2	0.15	0.26	0.33	0.30	0.66	0.60	0.61	0.73	4.20	0.40	0.47	1.40	0.38	0.29	0.58	0.44	0.91	0.61
36	B1	0.16	0.27	0.37	0.30	0.66	0.60	0.58	0.71	4.26	0.40	0.48	1.41	0.38	0.32	0.59	0.45	0.90	0.62
2017/2018 M	018 Minimum	0.14	0.22	0.29	0.26	0.57	0.50	0.39	0.60	3.64	0.35	0.42	1.17	0.33	0.22	0.51	0.39	0.43	0.53
2017/20	2017/2018 Maximum	1 0.17	0.37	0.48	0.39	0.89	0.73	0.75	0.86	5.88	0.52	0.58	2.03	0.44	0.43	0.76	09.0	1.20	0.88
2016/20	2016/2017 Minimum	1 0.13	0.18	0.31	0.23	0.51	0.45	0.45	0.54	3.02	0.32	0.37	66.0	0.31	0.23	0.46	0.34	0.70	0.46
2016/20	2016/2017 Maximum	1 0.19	0.26	0.55	0.44	0.93	0.83	0.77	0.88	6.39	0.54	0.61	2.18	0.49	0.49	0.82	0.66	1.32	1.01

South African Wheat Crop Quality Report 2017/2018 Season

RSA WHEAT CROP QUALITY SUMMARY RSA Crop Quality 2015/2016 and 2017/2018 Seasons

Country of origin	R	SA C	rop A	Avera	ige 2	015/2	016	R	SA C	rop /	vera	ige 2	017/2	018
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	124	56	18	11	39	4	252	142	77	22	15	42	6	304
WHEAT														
GRADING														
Protein (12% mb), %	13.3	11.7	11.2	13.3	13.0	14.9	12.8	13.1	12.0	11.0	11.9	13.0	13.3	12.6
Moisture, %	10.3	10.8	10.9	10.6	10.6	10.4	10.5	10.0	10.1	10.0	9.5	10.3	10.2	10.0
Falling number, sec	401	391	367	405	383	375	393	379	368	367	380	360	301	371
1000 Kernel mass (13% mb), g	36.3	39.4	39.3	34.6	34.9	30.6	36.8	36.9	39.4	40.9	37.0	36.4	34.2	37.7
Hlm (dirty), kg/hl	82.3	81.6	80.2	79.3	78.6	73.8	81.1	80.9	81.7	81.6	81.3	78.4	75.8	80.7
Screenings (<1.8 mm sieve), %	1.33	1.36	1.28	2.73	3.05	4.47	1.71	1.31	1.21	0.98	1.98	2.61	3.24	1.51
Gravel, stones, turf and glass, %	0.00	0.01	0.01	0.00	0.01	0.20	0.01	0.01	0.01	0.02	0.00	0.01	0.07	0.01
Foreign matter, %	0.09	0.11	0.13	0.18	0.30	0.58	0.14	0.11	0.13	0.10	0.10	0.29	0.39	0.14
Other grain & unthreshed ears, %	0.41	0.41	0.43	0.47	1.36	2.16	0.59	0.35	0.38	0.28	0.42	0.94	0.86	0.45
Heat damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.00
Immature kernels, %	0.08	0.06	0.03	0.10	0.04	0.12	0.06	0.05	0.04	0.02	0.01	0.11	0.30	0.06
Insect damaged kernels, %	0.34	0.43	0.56	0.37	0.78	2.16	0.47	0.59	0.54	0.60	0.55	1.20	3.44	0.72
Heavily frost damaged kernels, %	0.00	0.00	0.05	0.00	0.05	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.02	0.01	0.00	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.00	0.05	1.93	0.06
Total damaged kernels, %	0.44	0.51	0.59	0.49	0.83	2.30	0.56	0.66	0.61	0.65	0.56	1.36	5.73	0.84
Combined deviations, %	2.26	2.38	2.43	3.87	5.54	9.51	2.99	2.43	2.32	2.01	3.06	5.20	10.22	2.94
Field fungi, %	0.09	0.09	0.12	0.28	0.06	0.06	0.10	0.10	0.08	0.07	0.11	0.13	1.23	0.12
Storage fungi, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.00
Ergot, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Poisonous seeds (Argemone mexicana, etc.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Live insects	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	B1	B2	B 3	B4	UT	COW	Average	B1	B2	B 3	B4	UT	COW	Average
No. of samples	25	19	9	8	9	-	70	25	19	9	7	8	2	70
Bühler Extraction, %	73.7	73.8	73.2	73.0	72.4	-	73.4	73.2	73.6	73.6	72.8	71.6	71.2	73.1
FLOUR		<u> </u>	<u> </u>	<u> </u>		r								
Colour, KJ (wet)	-3.6	-3.6	-3.3	-3.5	-3.4	-	-3.5	-4.1	-4.2	-4.2	-4.3	-3.9	-3.5	-4.1
Colour, Konica Minolta CM5 (dry)														
L*	93.79	93.80	93.68	93.76	93.85	-	93.78	93.68	93.83	93.85	93.95	93.77	93.59	93.78
a*	0.49	0.47	0.42	0.47	0.47	-	0.47	0.44	0.44	0.45	0.38	0.41	0.31	0.43
b*	9.73	9.66	9.83	9.74	9.90	-	9.75	9.69	9.79	9.99	9.84	10.25	9.78	9.84
Protein (12% mb), %	12.4	11.2	10.9	11.9	12.0	-	11.8	12.0	11.1	10.2	10.0	11.7	11.9	11.3
Wet Gluten (14% mb), %	33.8	30.1	29.3	32.2	32.4	-	31.9	32.7	30.6	27.5	26.7	31.7	31.6	30.7
Dry Gluten (14% mb), %	11.8	10.4	9.7	11.2	11.1	-	11.0	11.1	10.3	9.2	9.0	10.8	10.9	10.4
Gluten Index	95	95	95	95	94	-	95	93	93	94	94	92	90	93
100g BAKING TEST	00.5	64.4	0.7	0.4	000		64.0	00.0	C1.4	000	000	01.0	00.0	C4.4
Baking water absorption, %	62.5	61.1	60.7	62.1	62.3	-	61.8	62.2	61.1	60.2	60.2	61.9	62.3	61.4
Loaf volume, cm ³	1097 0	1012 0	985 0	1029	1060 0	-	1047 0	1145 0	1104 0	1013 0	997 0	1109 0	1083 0	1096 0
Evaluation	0			1										
FARINOGRAM														
Water absorption (14% mb), %	61.4	60.8	59.6	60.6	60.5	-	60.8	60.9	60.1	59.5	58.8	60.9	60.4	60.3
Development time, min	6.2	5.3	5.7	5.8	5.9	-	5.8	6.3	5.2	4.3	4.7	5.4	5.2	5.5
Stability, mm	8.4	7.2	8.1	8.1	8.5	_	8.0	9.0	7.1	7.2	7.8	8.8	7.2	8.0
Mixing tolerance index, BU	37	39	38	39	36	-	38	3.0	45	43	43	35	42	40
				1 00										
				Fairegan				-	11-1		Patroge			1
	-													1
	-								100			1.	- formed	constraint and
	-	Jun						-	-	-				
	-	1		1				-	-	-				
		H							F	1				
		The second secon			i -			-/						
		J.							-					
		F							The second secon					
		1			F									

RSA Crop Quality of 2015/2016 and 2017/2018 Seasons

Country of origin	R	SA C	rop /	Aver a	ige 2	015/2	2016	R	SA C	rop /	Aver a	ige 2	017/2	018
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	25	19	9	8	9	-	70	25	19	9	7	8	2	70
ALVEOGRAM														
Strength (S), cm ²	41.5	35.6	33.6	39.8	38.1	- 1	38.3	44.6	36.1	34.0	34.6	40.6	36.1	39.2
Stability (P), mm	83	83	78	78	79	- 1	81	85	79	86	78	86	79	83
Distensibility (L), mm	120	104	108	127	117	- I	115	122	113	102	106	119	123	115
P/L	0.72	0.82	0.81	0.65	0.71		0.75	0.72	0.75	1.22	0.81	0.80	0.69	0.81
		T					19		Alimit					
		-/					000		-	1				
						*						-	-	-
EXTENSOGRAM														
Strength, cm ²	114	94	100	111	105	-	105	121	100	89	89	109	95	106
Max. height, BU	395	357	365	367	359	-	373	421	365	352	347	373	328	382
Extensibility, mm	207	186	187	207	204	-	198	209	197	180	178	206	200	198
		<							/	/		J		
MIXOGRAM														
Peak time, min	2.5	2.6	2.7	2.5	2.6	-	2.6	62.2	61.1	60.2	60.2	61.9	62.3	61.4
Water absorption (14% mb), %	62.8	61.2	61.0	62.4	62.3	-	62.0	2.8	2.6	2.7	2.7	2.4	2.5	2.6
			499 ⁹⁴	Anter Contraction									THE NEWS	Í
MYCOTOXINS														
Aflatoxin Β ₁ (μg/kg)				ND					-		ND			
Aflatoxin Β ₂ (μg/kg)				ND							ND			
Aflatoxin G ₁ (μg/kg)				ND							ND		1.	
Aflatoxin G ₂ (μg/kg)		1		ND		- 20					ND			
Fumonisin B ₁ (µg/kg)				ND							ND	3		
Fumonisin B ₂ (µg/kg)	1	6		ND							ND			
Fumonisin Β ₃ (μg/kg)		1		ND							ND			
Deoxynivalenol (µg/kg) [max. value]		1	8	<100 [5	93]						<100 [5	570]		
Ochratoxin A (μg/kg)	1			ND				1			ND			
Zearalenone (µg/kg)	1			ND				1			ND			
T-2 Toxin (µg/kg)				ND							ND			
No. of samples		-	_	40	_	_	_	-	-	_	40	_		_

RSA WHEAT CROP QUALITY SUMMARY RSA Crop Quality 2016/2017 and 2017/2018 Seasons

Country of origin	R	SA C	rop A	Avera	ge 2	016/2	017	R	SA C	rop /	Avera	ige 2	017/2	018
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	130	91	33	28	48	7	337	142	77	22	15	42	6	304
WHEAT														
GRADING														
Protein (12% mb), %	13.0	11.5	11.0	11.0	11.4	13.6	12.0	13.1	12.0	11.0	11.9	13.0	13.3	12.6
Moisture, %	9.9	9.8	9.8	9.9	9.7	10.2	9.9	10.0	10.1	10.0	9.5	10.3	10.2	10.0
Falling number, sec	358	361	343	359	349	358	356	379	368	367	380	360	301	371
1000 Kernel mass (13% mb), g	37.7	39.6	40.5	37.8	38.6	35.6	38.6	36.9	39.4	40.9	37.0	36.4	34.2	37.7
Hlm (dirty), kg/hl	81.7	82.0	81.8	81.5	80.7	77.7	81.5	80.9	81.7	81.6	81.3	78.4	75.8	80.7
Screenings (<1.8 mm sieve), %	1.35	1.64	1.53	2.70	3.03	4.37	1.86	1.31	1.21	0.98	1.98	2.61	3.24	1.51
Gravel, stones, turf and glass, %	0.01	0.01	0.01	0.00	0.01	0.39	0.02	0.01	0.01	0.02	0.00	0.01	0.07	0.01
Foreign matter, %	0.16	0.16	0.15	0.15	0.31	0.82	0.19	0.11	0.13	0.10	0.10	0.29	0.39	0.14
Other grain & unthreshed ears, %	0.34	0.36	0.29	0.29	0.74	0.44	0.40	0.35	0.38	0.28	0.42	0.94	0.86	0.45
Heat damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.00
Immature kernels, %	0.04	0.03	0.04	0.01	0.04	0.03	0.03	0.05	0.04	0.02	0.01	0.11	0.30	0.06
Insect damaged kernels, %	0.36	0.48	0.41	0.49	0.94	0.32	0.49	0.59	0.54	0.60	0.55	1.20	3.44	0.72
Heavily frost damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.16	0.14	0.11	0.06	0.16	1.09	0.16	0.02	0.02	0.02	0.00	0.05	1.93	0.06
Total damaged kernels, %	0.56	0.64	0.56	0.55	1.14	1.45	0.68	0.66	0.61	0.65	0.56	1.36	5.73	0.84
Combined deviations, %	2.40	2.82	2.55	3.70	5.21	7.21	3.14	2.43	2.32	2.01	3.06	5.20	10.22	2.94
Field fungi, %	0.32	0.35	0.32	0.43	0.41	0.57	0.36	0.10	0.08	0.07	0.11	0.13	1.23	0.12
Storage fungi, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.00
Ergot, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Poisonous seeds (<i>Argemone mexicana, etc.</i>) Live insects	0 No	No	No	No	No	No	No	No	No	No	No	No	0 No	No
Undesirable odour	No	No	No	No	No	No	No	No	No	No	No	No	No	No
														NO
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	23	14	11	10	11	1	70	25	19	9	7	8	2	70
Bühler Extraction, %	72.8	72.7	72.2	72.8	71.6	73.1	72.5	73.2	73.6	73.6	72.8	71.6	71.2	73.1
	1													
FLOUR														
Colour, KJ (wet)	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8	-4.1	-4.2	-4.2	-4.3	-3.9	-3.5	-4.1
Colour, Konica Minolta CM5 (dry)														
L*	93.65	93.68	93.68	93.90	93.77	93.38	93.71	93.68	93.83	93.85	93.95	93.77	93.59	93.78
a*	0.46	0.49	0.44	0.45	0.43	0.44	0.46	0.44	0.44	0.45	0.38	0.41	0.31	0.43
b*	9.91	10.21	10.17	10.48	10.05	10.15	10.12	9.69	9.79	9.99	9.84	10.25	9.78	9.84
Protein (12% mb), %	12.1	11.1	10.7	9.9	11.2	12.6	11.2	12.0	11.1	10.2	10.0	11.7	11.9	11.3
Wet Gluten (14% mb), %	33.0	30.7	29.5	25.9	31.0	34.3	30.7	32.7	30.6	27.5	26.7	31.7	31.6	30.7
Dry Gluten (14% mb), %	11.5	10.5	10.0	8.8	10.6	12.0	10.5	11.1	10.3	9.2	9.0	10.8	10.9	10.4
Gluten Index	95	93	94	96	93	96	94	93	93	94	94	92	90	93
100g BAKING TEST			0.0		0.1.5			0.0.5						<u></u>
Baking water absorption, %	62.4	61.3	60.8	59.7	61.3	63.0	61.3	62.2	61.1	60.2	60.2	61.9	62.3	61.4
Loaf volume, cm ³	1104	1029	987	957	1036	1167	1040	1145	1104	1013	997	1109	1083	1096
Evaluation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FARINOGRAM														
FARINOGRAM	60.8	60.1	60.2	57.8	60.3	59.7	60.1	60.9	60.1	59.5	58.8	60.9	60.4	60.3
Water absorption (14% mb), %	60.8 62	60.1	60.2 5.0	57.8	60.3 4 7	59.7	60.1 5.2	60.9 6.3	60.1 5.2	59.5 4.3	58.8	60.9 5.4	60.4 5.2	60.3
Water absorption (14% mb), % Development time, min	6.2	5.3	5.0	3.7	4.7	6.5	5.2	6.3	5.2	4.3	4.7	5.4	5.2	5.5
Water absorption (14% mb), % Development time, min Stability, mm														
Water absorption (14% mb), % Development time, min	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0 37	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0 37	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0
Water absorption (14% mb), % Development time, min Stability, mm	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3	6.3 9.0 37	5.2 7.1	4.3 7.2	4.7 7.8	5.4 8.8	5.2 7.2	5.5 8.0

RSA Crop Quality of 2016/2017 and 2017/2018 Seasons

Country of origin Class and Grade bread wheat		B2	rop / вз	B4		cow	Average	B1	B2	ВЗ	B4		017/2 cow	Avera
Class and Grade bread wheat No. of samples	23	в2 14	вз 11	В4 10	11	1	Average 70	B1 25	в2 19	В3 9	в4 7	8	2	Avera
	23			10		'	70	23	13	3			2	70
ALVEOGRAM		·	·	·	·		r						· · · ·	
Strength (S), cm ²	42.4	34.9	34.1	31.3	36.2	37.8	37.0	44.6	36.1	34.0	34.6	40.6	36.1	39.2
Stability (P), mm	74	72	77	69	76	71	73	85	79	86	78	86	79	83
Distensibility (L), mm	155	133	116	126	127	120	135	122	113	102	106	119	123	115
P/L	0.49	0.57	0.68	0.56	0.61	0.59	0.57	0.72	0.75	1.22	0.81	0.80	0.69	0.8
)			T			-	1	/	1		
EXTENSOGRAM					*	14	10-4					*	*	
	112	93	85	89	97	126	00	121	100	89	89	109	95	106
Strength, cm² Max. height, BU	113 388	93 359	85 326	368	97 348	420	99 364	421	365	352	89 347	373	95 328	382
Extensibility, mm	210	186	184	168	195	420 217	193	209	197	180	178	206	200	198
		_			-				/	_		J		
MIXOGRAM		-	-		-					-	18			
Peak time, min	2.6	2.5	2.6	2.8	2.5	2.9	2.6	62.2	61.1	60.2	60.2	61.9	62.3	61.
Water absorption (14% mb), %	62.4	61.1	60.9	59.9	61.4	63.0	61.4	2.8	2.6	2.7	2.7	2.4	2.5	2.6
												は 業 し		
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				ND					1		ND			
Aflatoxin B ₂ (µg/kg)	4			ND				15			ND			
Aflatoxin G ₁ (µg/kg)				ND							ND		1.	
Aflatoxin G ₂ (µg/kg)		1		ND		2					ND			
Fumonisin B ₁ (µg/kg)				ND			~				ND			
Fumonisin B ₂ (µg/kg)		6		ND							ND			
Fumonisin B ₃ (µg/kg)				ND							ND			
Deoxynivalenol (μg/kg) [max. value]			2-1	<100 [5	01]						<100 [5	70]		
Ochratoxin A (μg/kg)				ND							ND			
Zearalenone (µg/kg)				ND							ND			
								1						
T-2 Toxin (μg/kg) No. of samples				ND 40							ND 40			

METHODS

GRADING:

Full grading was conducted in accordance with the Regulations relating to the grading, packing and marking of bread wheat intended for sale in the Republic of South Africa (No. R. 64 of 29 January 2016). Please see pages 134 to 147.

Hectolitre mass, screenings, protein and falling number were determined. The determination of deviations relating to wheat kernels comprised foreign matter including gravel, stones, turf and glass; other grain and unthreshed ears; damaged kernels including heat-damaged kernels, immature kernels, insect-damaged kernels and sprouted kernels; heavily frost-damaged kernels; field fungi; storage fungi; ergot; noxious seeds; possible presence of undesirable odours and live insects.

Hectolitre mass means the mass in kilogram per hectolitre and was determined according to ISO 7971-3 by means of the Kern 222 instrument.

During earlier seasons the hectolitre mass was determined by means of the Two-level funnel method. In the 2009/2010 season the hectolitre mass value was adjusted by the addition of 2 kg/hl to all hectolitre mass values as per an Industrywide Hectolitre Mass Dispensation published by the National Department of Agriculture.

Hectolitre mass provides a measure of the bulk density of grain and is also useful as a guide to grain soundness and potential milling extraction (flour yield).

Screenings means all material that passes through a standard sieve. For the definition of a standard sieve please refer to the definitions of Regulation No. R. 64 on page 136 of this report.

Damaged wheat means wheat -

(a) which have been damaged by insects;

(b) which have been distinctly discoloured (orangebrown, dark brown or black) by external heat or as a result of heating caused by internal fermentation in wheat with an excessive moisture content, excluding wheat kernels in respect of which the discolouration is confined to the germ end;

(c) which are immature and have a distinctly green colour; and

(d) in which germination has proceeded to such an extent that the skin covering the embryo has been broken or the developing sprouts and/or rootlets are clearly visible.

Combined deviations means the sum of the percentages screenings, other grain and unthreshed ears, foreign matter and damaged kernels.

THOUSAND KERNEL MASS:

This is the weight in grams of one thousand kernels of grain and provides a measure of grain size and density. This determination does not include kernels that are broken or chipped and is done according to Industry Accepted Method 008. Thousand kernel mass is reported on a 13% moisture basis.

FALLING NUMBER MILLING:

At least 300 g of wheat is cleaned by using the standard 1.8 mm sieve and by removing coarser impurities by hand. The sample is then milled on a falling number hammer mill fitted with a 0.8 mm screen.

NEAR INFRARED SPECTROSCOPY (NIRS):

NIRS is a measurement technique based on the fact that the constituents to be measured, absorb electromagnetic radiation in the near infrared region of the electromagnetic spectrum. The moisture and protein content of the whole wheat flour and Quadromat milled flour samples are measured with a SpectraStar 2400 NIR Analyser RTW.

The calibration on the NIR was developed by the SAGL and is verified by analyzing every fifth sample by means of the primary methods, described on the next page under Moisture and Protein.

FALLING NUMBER:

This method is based upon the rapid gelatinization of an aqueous suspension of meal or flour in a boiling water bath and subsequent measurement of the liquefaction of the starch paste by the alphaamylase in the sample. The method measures the enzyme activity, mainly the α -amylase activity.

ICC Standard No. 107/1, latest edition is used to determine the falling number. The altitude-corrected value is reported on a 14% moisture basis.

QUADROMAT JUNIOR MILLING:

Cleaned wheat samples are conditioned by adding 3 ml water per 100 g wheat, 18 hours prior to milling. The samples are then milled on the Quadromat Junior laboratory mill.

BüHLER MILLING:

Cleaned wheat samples are conditioned to between 15.0% and 16.0% moisture according to the wheat moisture and kernel hardness and allowed to stand for a minimum of 18 hours (18 - 24 hours). Samples are then milled on a Bühler MLU 202 mill and passed through a bran finisher.

BüHLER EXTRACTION:

The extraction represents the flour yield after milling plus flour obtained from bran that passed through a bran finisher. Flour extraction is calculated from the mass of the total products. The Bühler MLU 202 mill is set for South African wheat, mill settings and sieve sizes deviate from AACCI method 26-21.02, latest edition.

MOISTURE:

ICC Standard No. 110/1, latest edition is used to determine the moisture content of wheat flour. This method determines moisture content as a loss in weight of a sample when dried in an oven at 130 °C for 90 minutes for flour or 2 hours for whole wheat flour.

PROTEIN:

The Dumas combustion analysis technique is used, according to AACCI method 46-30.01, latest edition.

This method prescribes a generic combustion method for the determination of crude protein. Combustion of the sample at high temperature (1 100 °C) in pure oxygen sets nitrogen free, which is measured by thermal conductivity detection. The total nitrogen content of the whole wheat flour and flour samples are determined and converted to equivalent protein by multiplication with a factor of 5.7 to obtain the protein content.

COLOUR:

Colour is one of the important properties of milled grains and the colour of wheat flour often affects the colour of the finished product. Generally speaking, a bright white colour flour is more desirable for most products.

The Kent Jones colour (so called wet colour) is determined by following FTP Method No. 0007/3, 7/1991. This method determines the influence of bran and/or extraneous material present in flour by measuring the reflectance of a flour-water slurry at a wavelength of 540 nm. The lower the Kent Jones colour, the lighter/brighter the flour and vice versa.

The dry colour of wheat flour can be measured accurately and precisely with the Konica Minolta CM-5 spectrophotometer. CIE L*a*b* (CIELAB) is a colour model using lightness (L*) and two colour values (a* and b*). The colour coordinates define where a specific colour lies in a Cartesian graph. L* represents lightness (100 being white and 0 being black), a* represents green to red variation and b* represents variation from blue to yellow. The results reported are for the 10° observer and D65 illuminant.

ASH:

Ash is defined as the quantity of mineral matter that remains as incombustible residue, after incineration of a sample in a muffle furnace by application of the described working method. The ash constituents of wheat are taken from the minerals of the soil. The total mineral content as well as the relative proportions of individual elements depend largely upon the soil, rainfall and other climatic conditions during growth.

Since the level of minerals present in flour is related to the rate of extraction, the ash content also indicates milling performance by indirectly revealing the amount of bran contamination. In-house method No. 011, based on the AACCI method 08-02.01 Rapid (Magnesium Acetate) method, is used for the determination.

RAPID VISCO ANALYSER:

AACCI method 76-21.01, latest edition, is followed to prepare a complete pasting curve by means of the Rapid Visco Analyser (RVA). The RVA is a rotational viscometer, able to continuously record the viscosity of a sample (under controlled temperature conditions) as the starch granules hydrate, swell and disintegrate (gelatinization and pasting), followed by possible realignment of the starch molecules during cooling (retrogradation).

Maximum viscosity before the onset of cooling (peak viscosity), time to peak viscosity, minimum viscosity after peak (trough) and final viscosity are measured and provide indications of the pasting properties of the samples and therefore its processing value for baking and other applications.

The results are reported in centipoise (cP) on a 14% moisture basis. Results can also be converted to RVU (rapid visco unit), 1 RVU = 12 cP.

GLUTEN:

Wheat gluten is the water-insoluble complex protein fraction present in wheat flours. The ability of wheat

flour to produce dough with good gas retaining properties is attributed to gluten. Gluten is a plastic elastic substance composed principally of two functional protein components. Glutenin, the high molecular weight fraction, contributes elasticity (is less extensible) and Gliadin, the low molecular weight fraction, provides the viscous component (is highly extensible and less elastic).

The gluten content of wheat flour is determined by means of AACCI Method 38-12.02, latest edition. Wet gluten is washed from meal or flour by an automatic washing apparatus (Glutomatic).

The wet gluten is dried under standardized conditions in a Glutork to obtain the dry gluten. The total wet and total dry gluten contents are expressed as percentages of the sample on a 14% moisture basis.

Wet gluten content correlates to loaf volume and dry gluten content to the crude protein content. The difference between the wet and dry gluten contents is an indication of the water-holding capacity of the gluten proteins, which is in turn, related to flour water absorption.

The gluten index is the ratio of the wet gluten remaining on the sieve (after centrifugation) to the total wet gluten. The gluten index provides an indication of the gluten strength and is not influenced by the protein content.

FARINOGRAPH:

AACCI method 54-21.02, latest edition constant flour weight procedure is followed, using 300 g of flour on a 14% moisture basis.

The farinograph measures and records the resistance of a dough to mixing, as it is formed from flour and water, developed and broken down. This resistance is called consistency. The dough is subjected to a prolonged, relatively gentle mixing action.

The water absorption is the amount of water required for a dough to reach a definite consistency (500 Brabender units). The amount of water added to the flour is expressed as a percentage of the flour mass and reported on a 14% moisture basis.

The **development time**, measured in minutes, is the time from the beginning of water addition until the dough reaches its optimum consistency and the point immediately before the first indication of weakening. A long mixing time can be associated with flours with a high percentage of gluten-forming proteins.

The **stability**, measured in minutes, is the time during which the top of the curve intercepts a horizontal line through the centre of the curve. This gives an indication of the dough's tolerance to mixing: the longer the stability, the longer the mixing time that the dough can withstand. A dough with a longer stability can also withstand a longer fermentation period.

The **mixing tolerance index** (MTI) value is the difference, in Brabender units (BU), between the top of the curve at the peak and the top of the curve measured 5 minutes after the peak is reached. The value gives an indication of the extent to which breakdown of the dough occurs. The higher the value, the more and the quicker the breakdown of the dough occurs. This value is similar to the mixogram tail height.

EXTENSOGRAPH:

The extensograph measures the resistance and extensibility of a fully mixed, relaxed flour-water dough, by measuring the force required to stretch the dough with a hook until it breaks. ICC Standard No. 114/1, latest edition is followed.

The **strength**, measured in cm², gives an indication of the total force (work) needed to stretch the dough and is represented by the area under the curve.

The **maximum height/resistance**, measure in BU, gives an indication of the dough's resistance to stretching and is measured as the mean of the maximum heights of the curves of the two test pieces.

The **extensibility**, measured in millimeters, is the mean length at the base of the two curves and indicates the stretch ability of the dough.

ALVEOGRAPH:

The alveograph measures the resistance of the dough to stretching and also how extensible the dough is. The alveograph stretches the dough in more than one direction (as is happening during proofing), whereas the extensograph stretches the dough in only one direction. ICC Standard No. 121, latest edition is followed.

Strength (S): The area under the curve gives an indication of the dough strength and is measured in cm^2 .

Stability (P): Obtained by multiplying the maximum height of the curve with a constant factor of 1.1. This value is an indication of the resistance of the dough to extension (force required to blow the bubble of dough) and is measured in millimetres.

Distensibility (L): The length of the curve, measured along the base line in millimetres, corresponds to the maximum volume of air that the bubble can withhold. Provides an indication of the extensibility of the dough.

P/L-value: This ratio is obtained by dividing the P-value by the L-value, thus providing an approximate indication of the shape of the curve that combines stability and extensibility (viscoelastic properties).

MIXOGRAPH:

A 35 g mixograph is used. The amount of flour weighed is adjusted according to the flour moisture content and the amount of water added to the flour is adjusted according to the flour protein content. Industry Accepted Method 020 based on AACCI method 54-40.02, latest edition is followed.

Mixogram peak time is the time measured in minutes that dough takes to reach its maximum consistency or first indication of dough weakening. The peak time is a measure of optimum dough development and thus a measure of protein quality.

Mixogram tail height at 6 minutes is the distance in millimetres measured from the base line of the paper at 6 minutes to the graph centre point at 6 minutes. This figure is an indication of the weakening effect of the dough. Higher values indicate flours that are more tolerant to mixing.

100 g BAKING TEST:

This procedure, according to Industry Accepted Method 022 based on AACCI Method 10-10.03, latest edition, provides an optimized bread-making method for evaluating bread wheat flour quality and a variety of dough ingredients by a straight-dough method in which all ingredients are incorporated in the initial mixing step.

Keys for the evaluation of the 100 g Baking test:

- 0 Excellent
- 1 Very Good
- 2 Good
- 3 Questionable
- 4 Poor
- 5 Very Poor
- 6 Extremely Poor

Please note: This 100 g Baking test evaluation does not give an indication of the baking quality of the flour, but refers to the relationship between the protein content and the bread volume.

AMINO ACID PROFILE:

The protein bound amino acids (Aspartic acid (Asp), Glutamic acid (Glu), Serine (Ser), Glycine (Gly), Histidine (His), Arginine (Arg), Threonine (Thr), Alanine (Ala), Proline (Pro), Tyrosine (Tyr), Valine (Val), Isoleucine (Ileu), Leucine (Leu), Phenylalanine (Phe) and Lysine (Lys)) were determine by using Inhouse method No. 028, (AccQ-Tag method).

Samples (400 mg) are hydrolysed with 6 N hydrochloric acid (HCl) for 24 hours and then derivatized with 6-aminoquinolyl-Nhydroxysuccinimidyl carbomate (AQC) to produce stable derivatives. These amino acids are then analysed by a reverse phase UPLC method, using a Waters Acquity H-Class UPLC with Empower software (Waters, Millipore Corp., Milford, MA).

In-house method No. 15, where the sample is first oxidized and dried, was followed for the determination of Cysteine (as Cysteic acid) and Methionine (as Methionine sulfone). The samples were then analysed with liquid chromatography using a modified Pico-Tag method.

For the determination of Tryptophan according to In-house method No. 007, the samples are hydrolysed under alkaline conditions with a saturated barium hydroxide solution heated to 110 °C for 20 hours. The hydrolysate is analysed by reverse phase liquid chromatography with UV detection at 285 nm.

MYCOTOXIN ANALYSES:

Mycotoxins are secondary metabolites produced by fungi on agricultural commodities intended for human and animal consumption. These mycotoxins are potentially dangerous to humans and animals since they are, amongst other also carcinogens. Aside from health risks, mycotoxin contamination can also reduce the value of the crops. Environmental factors such as temperature, humidity, soil and storage conditions influence toxin production.

SAGL implements a validated SAGL In-house multimycotoxin screening method using UPLC - MS/ MS. 40 of the 304 wheat crop samples were tested for Aflatoxin B1; B2; G1; G2, Fumonisin B1; B2; B3, Deoxynivalenol, 15-ADON, HT2 Toxin, T-2 Toxin, Zearalenone and Ochratoxin A.

Wheat Imports and Exports

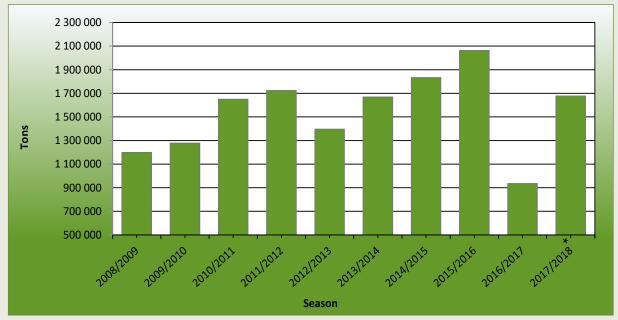
SAGIS South African Grain Information Service NPC Bag no. 1997/019186/08

WHEAT EXPORTS/IMPORTS PER COUNTRY

			2016/	6/2017 Season (1 Oct 2016 - 29 Sep 2017)	2016 - 29 Sep 2	017)			
RSA EXPORTS	ST	IMPORTS FOR RSA	FOR	IMPORTS FOR OTHER COUNTRIES	FOR NTRIES	EXPORTS OF IMPORTED WHEAT	OF VHEAT	IMPORTS PER HARBOUR	PER
To Country	Tons	From Country	Tons	From Country	Tons	To Country	Tons	Harbour	Tons
Botswana	19 168	Argentina	35 613	Argentina	5 853	Botswana	92 449	Cape Town	3 850
Lesotho	18 326	Australia	24 816	Australia	2 484	Lesotho	67 034	Durban	$1\ 056\ 011$
Mozambique	2 992	Canada	27 841	Canada	12 917	Swaziland	42 138	East London	55 162
Namibia	9 367	Czech Republic	144 402	Czech Republic	31 403	Zambia	4 999	Port Elizabeth	39 724
Swaziland	2 529	Germany	237 508	Germany	56 761	Zimbabwe	20 154		
Zambia	15 312	Latvia	17 098	Latvia	5 978				
Zimbabwe	25 204	Poland	76 912	Poland	14 002				
		Romania	112 334	Romania	11 289				
		Russian Federation	182 993	Russian Federation	71 688				
		Ukraine	13 568	United States	7 607				
		United States	61 680						
Total	92 898	Total	934 765	Total	219 982	Total	226 774	Total	1 154 747

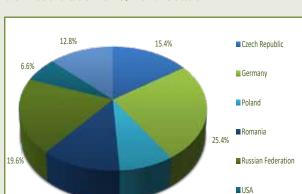
79

SAGIS South African Grain Information Service NPC Bag no. 1997/019186/08


WHEAT EXPORTS/IMPORTS PER COUNTRY

			2017/.	2017/2018 Season (30 Sep 2017 - 13 Jul 2018)	2017 - 13 Jul 2	(018)			
RSA EXPORTS	IS	IMPORTS FOR RSA	FOR	IMPORTS FOR OTHER COUNTRIES	FOR VTRIES	EXPORTS OF IMPORTED WHEAT	S OF WHEAT	IMPORTS PER HARBOUR	PER
To Country	Tons	From Country	Tons	From Country	Tons	To country	Tons	Harbour	Tons
Botswana	7 062	Argentina	134 817	Argentina	13 572	Botswana	84 050	Cape Town	228 123
Lesotho	6 918	Germany	283 427	Germany	25 215	Lesotho	50 722	Durban	1 517 591
Namibia	9 700	Latvia	138 522	Latvia	31 735	Mozambique	1 479	East London	60 364
Swaziland	10 704	Lithuania	184 356	Lithuania	16 864	Swaziland	25 231	Port Elizabeth	41 532
Zambia	24 333	Poland	22 416	Poland	8 008	Zimbabwe	12 209	Richards Bay	25 601
Zimbabwe	1 405	Romania	101 449	Russian Federation	94 103				
		Russian Federation	596 291	Ukraine	3 560				
		Ukraine	135 669	United States	2 992				
		United States	80 215						
Total	60 122	Total	1 677 162	Total	196 049	Total	173 691	Total	1 873 211

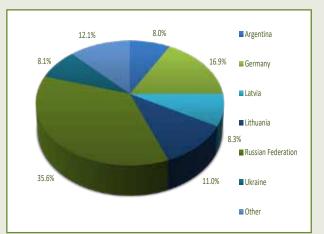
80


Quantity of wheat imported to the RSA

The graphs and table given below and on the next page, are based on progressive import figures per country provided by SAGIS.

Graph 23: Total wheat imports for domestic use from the 2008/2009 season

*2017/2018 season figure includes imports up to 13 July 2018.


8.2%

Other

12.0%

Graph 24: Wheat imports per origin for domestic use 2016/2017 season

*2017/2018 season figure includes imports up to 13 July 2018.

					Sea	ason					
	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018*	Total (Tons)
Argentina	368 739	-	629 600	652 279	98 029	-	59 607	49 516	35 613	134 817	2 028 200
Australia	74 714	55 312	181 637	247 675	189 925	49 780	95 254	38 457	24 816	-	957 570
Brazil	42 449	123 944	58 551	276 420	234 733	-	-	-	-	-	736 097
Canada	54 831	72 911	79 697	45 252	48 583	111 289	105 457	102 816	27 841	-	648 677
Czech Republic	-	-	-	-	-	-	-	-	144 402	-	144 402
Finland	-	-	-	-	-	25 430	-	-	-	-	25 430
France	-	-	-	-	-	-	-	-	-	-	0
Germany	518 002	809 934	88 581	105 964	95 476	179 436	348 385	283 451	237 508	283 427	2 950 164
Latvia	-	-	-	-	-	22 013	61 005	-	17 098	138 522	238 638
Lesotho	-	-	-	-	384	-	-	-	-	-	384
Lithuania	-	1 611	-	8 880	-	40 532	43 791	151 047	-	184 356	430 217
Poland	13 013	-	-	-	-	-	91 483	185 036	76 912	22 416	388 860
Romania	-	-	-	36 071	-	-	-	-	112 334	101 449	249 854
Russian Federation	-	-	-	154 129	245 228	800 964	719 784	956 705	182 993	596 291	3 656 094
Swaziland	-	-	-	-	288		-	-	-	-	288
UK	-	-	-	-	-	-	-	-	-	-	0
Ukraine	13 521	41 230	-	39 016	341 976	372 500	279 364	109 350	13 568	135 669	1 346 194
Uruguay	-	-	25 249	45 250	99 033	-	-	-	-	-	169 532
USA	113 434	173 030	586 200	112 915	42 572	66 468	28 311	186 387	61 680	80 215	1 451 212
Total	1 198 703	1 277 972	1 649 515	1 723 851	1 396 227	1 668 412	1 832 441	2 062 765	934 765	1 677 162	15 421 813

Table 8: Total wheat imports per country per season for use in the RSA

*2017/2018 season figures include imports up to 13 July 2018.

Quality summary of imported wheat (1 October 2016 to 30 September 2017) (Previous season)

The quality of all wheat imported into South Africa is monitored by the SAGL. A subsample of all samples drawn by inspectors of the South African Agricultural Food, Quarantine and Inspection Services (SAAFQIS) of the Department of Agriculture, Forestry and Fisheries (DAFF) is forwarded to the SAGL for analysis. To assist with quality comparisons between local and imported wheat, the same scope of analysis is used for both sets of samples. The import quality results are published at the end of each production and marketing season.

For grading as well as dough and baking quality results of the imported wheat per country, please refer to pages 86 to 107. This imported wheat quality is compared to a summary of the local crop quality of the corresponding (2016/2017) season. To simplify the comparison between the quality of the different countries of import and South African wheat, the average quality per country was summarised in Table 9 on pages 84 and 85. The minimum, maximum and standard deviation per country was also calculated. Please take note of the number of samples analysed when comparing results, the higher the number of samples, the more reliable the average result will be.

A total number of 93 samples of wheat imported from the following eleven countries were received (number of samples received in brackets): Argentina (3), Australia (1), Canada (7), Czech Republic (2), Germany (37), Latvia (4), Poland (8), Romania (9), Russian Federation (22), Ukraine (4) and USA (6). Wheat imported for purposes other than bread baking (e.g. soft types for biscuit making) is included in this data set.

Most of the wheat imported to South Africa is blended with local wheat to obtain a certain milling and baking quality as per individual company specifications. Milling companies will blend higher and lower quality wheat to obtain the most cost-effective grist formulation that conforms to a specific quality. The main objective is to supply the most consistent quality of flour to their customers (bakers) as possible, as in the end, consistency is one of the most important quality parameters.

Towards the end of the production season, it may however become necessary for milling companies to mill wheat blends consisting only of imported wheat. Transportation cost is also an important factor for consideration. The grist formulation of mills situated at the coast will as a result consist mainly of imported wheat whereas inland mills will mill a combination of local and imported wheat.

Hectolitre mass is an important grading factor that also provides an indication of flour extraction potential. 18% of the samples had hectoliter mass values below 77 kg/hl (minimum requirement for South African grade B1 wheat), compared to the 7% and 3% of the previous two seasons. These samples originated from the Russian Federation, Poland and the Ukraine which reported the lowest hectoliter mass values overall.

Screenings represent all material that passes through a standard sieve (1.8 mm), with 3% the maximum allowed for grades 1 to 3 according to RSA grading regulations. When comparing screening results originating from different countries, it is important to keep in mind that sieve aperture size and shape as well as sample preparation procedures vary between countries. Samples from Poland, the Ukraine and Russian Federation reported the highest levels of screenings, which explains the low hectolitre mass values observed on these samples at least in part.

None of the samples reported falling number results below 220 seconds. The wheat imported from Australia had the highest falling number value as in the previous three seasons.

The protein content and rheological characteristics of the wheat imported from the USA varied from low and weak to average and fair. The average values are therefore not a true reflection of the overall imported USA wheat bread baking quality, since most of the wheat imported were most probably not intended for bread baking purposes.

The ability of wheat flour to produce dough with good gas-holding capability is attributable to gluten as gluten imparts the elasticity and extensibility characteristics to the dough. Good quality gluten is capable of producing a loaf of bread with a high volume and good crumb texture. As in the previous seasons, the imported Canadian wheat had the highest protein content resulting in the highest gluten content. When evaluating gluten results, it is important to take the protein content into account. The ratio of wet gluten to total protein content is normally between 2.5 - 2.8 to 1. The wet gluten content of good quality white bread flour normally ranges between 27 - 33% (14% mb). The difference between wet and dry gluten is an indication of the water-holding capacity of the gluten proteins which is in turn related to protein quality. This water-holding capacity is also one of the factors determining flour water absorption.

Flour with higher water absorption is preferred by bakers as this results in increased dough yields. The acceptable range for white bread flour is normally between 60.0 - 64.0%, averaging 61.0 - 62.0%. In general, longer farinogram development times of 3.5 to 6.0 minutes and stabilities of 8.0 to 12.0 minutes will be an indication of good baking quality, which is associated with good protein quality.

Acceptable ranges for the alveogram parameters generally are as follows: Strength $30 - 45 \text{ cm}^2$, stability (P) 65 - 120 mm, distensibility (L) 80 - 120 mm and P/L 0.70 - 1.50. A good correlation exists between alveogram strength and protein quality. Low/short distensibility values, indicated by high P/L values can result in lower loaf volumes. High/long distensibility values, are indicative of soft doughs with excess stretching properties, which can also result in low loaf volumes due to poor gas retention properties. In general, extensogram strength values ranging between $80 - 150 \text{ cm}^2$, maximum heights of 300 - 550 BU and extensibility values of 170 - 220 mm, indicate good baking quality.

Most of the imported wheat samples, again showed a tendency towards longer mixogram mixing times. Some of these long mixing times can be explained by low protein levels in the samples. Flours having undesirably low protein starch ratios, require more time to produce continuous protein phases during mixing. Mixing time provides an indication of the amount of time needed to mix the dough to optimum development, between 2.8 and 3.5 minutes are considered acceptable in South Africa. The longer the mixing time, the larger the risk that the dough will not be mixed to optimum development, which will negatively influence the bread quality and cause lower loaf volumes.

Composite samples of holds per shipment per country were tested for the presence of mycotoxin residues by means of a multi-mycotoxin analysis. The mycotoxin results did not raise any concerns. Deoxynivalenol (DON) residues were observed on some of the samples, but none of the levels exceeded national or international maximum residue levels.

Table 9: Summary of the quality results of imported wheat duringthe 2016/2017 season

							3		/0107	107	/ SCG	Seasull				-							Γ
Ouality naramatar		Argentina	ntina			Australia	lia			Canada	_		Cze	Czech Republic			Ger	Germany			Latvia	/ia	
	Ave	Min	Мах	Stdev	Ave	Min	Max S	Stdev	Ave	Min	Max Sto	Stdev Ave	e Min	n Max	Stdev	v Ave	Min	Мах	Stdev	Ave	Min	Мах	Stdev
Hectolitre mass, kg/hl	80.3	7.67	81.3	0.85	85.3		_		81.9	81.6 8	82.5 0.31	31 78.8	.8 78.7	7 78.8	0.07	79.5	6.77	81.3	0.88	78.6	78.4	78.9	0.22
Screenings (<1.8mm), %	3.15	3.00	3.32	0.16	1.90	-		,	2.78	1.56 4	4.68 1.3	1.25 2.08	1.94	4 2.22	0.20	1.90	1.02	3.30	0.60	2.22	2.06	2.39	0.15
1000 Kernel mass, g (13 % mb)	34.2	33.0	35.2	1.11	37.4	-			32.6	30.4 3	34.1 1.57	57 41.5	5 41.2	2 41.8	0.42	42.8	38.8	46.3	2.06	40.3	39.1	41.3	0.97
WWF Protein (12% mb), %	10.2	9.8	10.4	0.34	12.3			-	14.1	13.5	14.6 0.47	47 11.4	.4 11.4	4 11.4	0.04	11.4	10.8	12.0	0.29	12.7	12.5	12.7	0.09
WWF Falling number, sec	355	338	365	15.04	509				360	323 ,	412 27	27.91 354	4 326	6 381	38.89	9 331	281	365	25.53	296	271	337	30.58
Number of samples		.,	3			1				7				2				37			4		
Flour moisture, %	13.6	13.5	13.7	0.10	14.2			-	14.3	14.0	14.6 0.	0.19 13.6	.6 13.4	4 13.7	0.21	14.0	13.2	14.6	0.28	13.7	13.5	14.2	0.33
Flour Protein, % (12 % mb)	8.9	8.5	0.6	0.27	10.9				12.8	12.3	13.4 0.	0.49 9.9	9.9	9 10.0	0.06	10.0	9.5	10.5	0.25	11.5	11.4	11.6	0.09
Ash, % (db)	0.58	0.56	0.60	0.02	0.55				0.58 (0.54 0	0.67 0.	0.05 0.54	54 0.53	3 0.54	0.01	0.50	0.44	0.55	0.03	0.53	0.46	0.58	0.05
Colour, KJ (wet)	-3.5	-3.6	-3.4	0.10	-3.7				-3.6	-4.0	-3.1 0.	0.36 -3.1	.1 -3.2	2 -3.0	0.14	-3.2	-3.5	-2.9	0.16	-2.9	-3.0	-2.7	0.13
Konica Minolta CM-5 colour, L*	93.70	93.63	93.81	0.09	93.36		,	- 00	93.24 9	93.08 9	93.46 0.	0.16 93.46	46 93.46	46 93.46	0.00	93.49	93.25	93.71	0.11	93.14	93.08	93.19	0.05
Konica Minolta CM-5 colour, b*	10.46	10.32	10.54	0.12	10.06			•	10.44 1	10.24 1	10.73 0.	0.19 10.21	21 10.10	10 10.31	0.15	9.97	9.03	10.76	0.47	9.66	9.61	9.75	0.07
Wet gluten, % (14 % mb)	20.9	20.1	21.3	0.67	28.6	•	•		34.6	32.9	36.5 1.	1.19 26.2	.2 25.7	7 26.7	0.71	26.4	24.6	28.5	1.05	31.2	30.7	31.5	0.36
Dry gluten, % (14 % mb)	7.3	7.1	7.4	0.17	10.0				12.0	11.1	13.0 0.	0.66 8.9	9 8.5	5 9.2	0.49	9.1	8.2	10.6	0.51	11.1	10.8	11.3	0.21
Gluten Index	66	66	100	0.58	66				96	95	98 1.	1.13 97	2 96	3 97	0.71	26	94	100	1.42	76	10	98	43.99
Farinogram																							
Water absorption, % (14% mb)	55.1	55.1	55.2	0.06	58.8				6.09	60.1 6	62.1 0.	0.78 56.4	.4 56.3	3 56.4	0.07	56.6	55.5	58.2	0.59	57.5	57.3	57.7	0.16
Development time, min	1.5	1.5	1.5	0.00	8.2				8.0	6.8	9.2 0.	0.78 2.0	0 2.0	0 2.0	0.00	2.1	1.7	2.7	0.27	3.3	2.9	3.7	0.35
Stability, mm	3.0	2.5	3.6	0.57	16.1	-			12.8	10.6 1	14.7 1.99	99 8.7	7 8.2	2 9.1	0.64	7.0	2.7	11.0	2.16	11.5	9.8	13.1	1.72
Alveogram																							
Strength, cm ²	30.5	27.8	33.8	3.04	44.6				49.5 4	45.3 5	56.7 4.3	4.26 33.2	.2 32.0	0 34.3	1.63	33.7	24.5	39.6	3.28	37.1	34.1	39.3	2.19
Stability, mm	62	20	88	9.02	98				76	68	86 6.81	81 77	7 74	62 1	3.54	62	66	33	6.14	88	83	91	3.42
Distensibility, mm	73	60	82	11.53	91				151	135	163 9.4	9.49 94	4 91	97	4.24	93	60	123	15.42	85	71	91	9.32
РЛ.	1.12	0.91	1.47	0.31	1.08				0.51 (0.42 0	0.64 0.07	07 0.82	82 0.76	6 0.87	0.08	0.88	0.54	1.39	0.21	1.05	0.91	1.28	0.16
Extensogram																							
Strength, cm ²	91	68	92	2.12	119				129	110	150 15.	15.49 89	9 84	93	6.36	89	72	104	6.53	98	92	107	6.38
Max. height, BU	468	466	469	2.12	538		-		424	366 4	466 34.	34.92 410	0 385	5 434	34.65	414	336	464	29.56	420	388	465	33.44
Extensibility, mm	141	137	144	4.95	165				224	205	237 12.	.62 154	4 153	3 155	1.41	154	142	164	6.19	170	164	181	7.80
Mixogram																							
Peak time, min	5.0	4.8	5.2	0.21	3.6		•		3.1	2.9	3.3 0.	0.13 3.6	6 3.4	1 3.8	0.28	3.7	2.6	4.5	0.44	4.4	4.2	4.9	0.32
100g Baking Test																							
Loaf volume, cm ³	837	815	853	19.86	992	-	-	`	1104 1	1079 1	1136 20.	20.75 861	1 800	0 921	85.56	904	808	995	46.56	1041	1021	1078	26.70
Evaluation	0	0	0	0.00	0	-			0	0	0 0.	0.00 0	0	0	0.00	0	0	0	0.00	0	0	0	0.00
Number of samples						1				7				2				37			4		
											Ì			1									1

Table 9: Summary of the quality results of imported wheat duringthe 2016/2017 season (continue)

									21		ocaso11	-	COLICITIC										
Ouality narameter		Poland	and			Romania	lia.		Rus	Russian Federation	ration		5	Ukraine			⊃	NSA		RS	RSA crop average 2016/2017	erage 201	6/2017
	Ave	Min	Мах	Stdev	Ave	Min	Max §	Stdev	Ave	Min M	Max Stdev	ev Ave	Min	Мах	Stdev	Ave	Min	Max	Stdev	Ave	Min	Мах	Stdev
Hectolitre mass, kg/hl	78.0	75.7	80.7	2.10	78.3	77.3	80.4	1.18	76.9	74.5 79.	9.3 1.25	5 62.4	4 60.1	63.7	1.58	79.2	78.9	79.3	0.15	81.5	74.3	86.0	2.07
Screenings (<1.8mm), %	9.00	1.74	15.20	4.25	2.89	2.18	3.30	0.47	4.62	3.02 7.	7.90 1.54	4 6.66	6.41	6.87	0.19	3.62	2.84	4.03	0.43	1.86	0.03	9.32	1.32
1000 Kernel mass, g (13 % mb)	40.2	36.8	43.1	2.16	39.2	37.0	41.6	1.42	37.6	35.1 4	41.7 1.34	4 37.2	2 36.3	38.3	0.87	31.2	28.6	35.7	3.32	38.6	25.5	49.2	3.61
WWF Protein (12% mb), %	12.2	11.8	13.0	0.36	10.6	10.1	11.3	0.43	11.0	10.8	11.2 0.10	0 11.2	2 11.2	11.3	0.04	10.7	9.1	11.5	1.04	12.0	8.8	18.9	1.43
WWF Falling number, sec	310	295	341	17.25	363	311	391 3	30.90	343	273 4	494 58.01	01 325	305	352	19.82	398	316	456	57.51	356	128	629	42.09
Number of samples		3	8			9				22				4				6				337	
Flour moisture, %	14.2	13.8	14.4	0.23	13.9	13.5	14.2	0.23	13.5	12.8 1	14.2 0.44	4 13.4	4 13.0	14.0	0.43	13.5	13.2	13.8	0.26	13.8	13.2	15.1	0.31
Flour Protein, % (12 % mb)	10.7	10.4	11.4	0.29	9.2	8.9	9.8	0.36	9.8	9.7 1	10.0 0.10	0 10.0	0 10.0	10.0	0.02	9.2	7.3	10.1	1.30	11.2	8.3	17.0	1.77
Ash, % (db)	0.56	0.54	0.58	0.02	0.51	0.48	0.54	0.02	0.56	0.51 0	0.64 0.03	3 0.52	2 0.51	0.54	0.02	0.52	0.44	0.57	0.05	0.59	0.52	0.67	0.03
Colour, KJ (wet)	-2.9	-3.2	-2.6	0.18	-3.1	-3.2	-3.0	0.07	-2.7	-3.3	-1.8 0.34	4 -3.0	-3.1	-2.9	0.10	-3.4	-3.7	-3.2	0.17	-3.8	-4.4	-2.0	0.48
Konica Minolta CM-5 colour, L*	93.15	92.96	93.38	0.17	93.12	92.81	93.31	0.18	93.11 (92.38 93	93.53 0.29	9 93.22	2 93.11	93.29	0.09	93.89	93.30	94.97	0.76	93.71	92.17	94.30	0.43
Konica Minolta CM-5 colour, b*	9.63	9.35	10.46	0.37	10.28	9.85	11.10	0.47	11.26	9.58 11	11.98 0.82	2 10.89	9 10.84	11.02	0.09	9.97	8.84	10.51	0.73	10.12	9.03	11.65	0.53
Wet gluten, % (14 % mb)	28.8	28.0	30.7	0.86	22.5	20.3	25.2	1.73	25.0	23.3 25.	5.9 0.69	9 24.8	8 24.5	25.2	0.33	23.2	18.3	24.5	2.73	30.7	20.9	51.1	5.56
Dry gluten, % (14 % mb)	9.9	9.3	11.1	0.53	8.0	7.5	8.9	0.52	8.4	8.1	9.0 0.24	4 8.7	8.6	8.8	0.10	8.0	5.9	8.6	1.16	10.5	7.0	17.4	1.99
Gluten Index	98	96	66	0.99	66	98	100	0.83	97	94	99 1.29	9 100	66 0	100	0.58	66	95	100	2.24	94	63	66	5.17
Farinogram																							
Water absorption, % (14% mb)	56.9	55.8	59.1	1.05	55.7	54.8	58.1	1.06	56.9	54.8 5	58.4 1.21	1 55.4	4 55.2	55.5	0.13	52.0	48.0	53.9	2.38	60.1	54.2	68.5	2.38
Development time, min	2.4	2.0	2.8	0.27	2.2	1.2	7.6	2.03	2.2	1.5 7	7.6 1.22	2 1.8	1.7	2.0	0.15	1.7	1.0	2.2	0.50	5.2	1.7	9.3	1.75
Stability, mm	8.9	6.0	13.4	2.39	7.1	3.7	15.6	3.56	7.2	3.3 12.	2.1 2.76	6 5.0	4.0	6.8	1.33	8.4	1.3	14.5	5.47	8.3	3.7	15.9	3.15
Alveogram										-													
Strength, cm ²	39.2	35.0	50.9	5.17	25.6	20.5	36.2	5.50	30.9	25.7 3	37.2 2.62	2 29.7	7 27.8	31.3	1.48	22.8	13.3	30.4	7.33	37.0	22.2	59.5	8.70
Stability, mm	75	69	93	7.98	78	71	92	8.54	06	72 1	105 8.22	2 85	78	63	6.60	59	29	4	19.88	73	52	107	10.07
Distensibility, mm	114	102	138	12.14	65	48	88	12.63	64	52 8	82 7.82	2 61	57	70	5.97	76	62	113	18.43	135	80	210	24.81
РЛ	0.67	0.51	0.83	0.10	1.24	0.93	1.79	0.25	1.45	0.99 1.	.94 0.26	6 1.41	1 1.11	1.60	0.21	0.84	0.26	1.21	0.36	0.57	0.30	1.15	0.16
Extensogram																							
Strength, cm ²	105	93	135	13.68	70	61	101	13.29	82	72 \$	93 5.40	0 102	66 3	104	2.38	100	55	117	25.38	99	53	153	25.33
Max. height, BU	451	389	518	49.33	349	310	490 (60.13	418	384 4	471 22.39	39 466	3 457	474	6.98	506	355	566	86.29	364	227	540	74.59
Extensibility, mm	169	154	192	11.88	139	134	147	4.99	143	132 1	157 6.92	2 160	155	165	4.57	143	109	158	19.61	193	144	269	25.98
Mixogram																							
Peak time, min	4.1	3.7	4.9	0.37	4.5	3.2	5.1	0.70	4.4	3.3 5	5.2 0.41	1 5.4	4.8	5.9	0.47	5.3	4.6	5.8	0.47	2.6	1.9	3.5	0.39
100g Baking Test																							
Loaf volume, cm ³	955	912	066	26.52	865	821	606	27.25	866	6 608	931 30.88	38 941	938	944	2.65	894	697	964	102.64	1040	789	1270	104.80
Evaluation	0	0	0	0.00	0	0	0	0.00	0	0	0.00	0	0	0	00:0	0	0	0	0.00	0	0	2	0.24
Number of samples		~	8			9				22				4				6				20	

2016/2017 IMPORTED WHEAT QUALITY - ARGENTINA (1 Oct 2016 to 30 Sep 2017)

2016/2017 Imported wheat	Qua						17 5							
Country of origin	<u> </u>	<u> </u>	rgen	ntina /		<u> </u>	,		R	ISA C	rop		age	r
Class and Grade bread wheat	B1	B2	B 3	B4	UT	cow	Average	B1	B2	B 3	B4	UT	COW	Average
No. of samples	-	-	-	3		-	3	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %	- 1	-	-	10.2	-	- 1	10.2	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	-	- 1	11.2	-	- 1	11.2	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	-	-	355	-	- 1	355	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	-	-	34.2	-	-	34.2	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	-	-	80.3	-	-	80.3	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	-	-	3.15	-	-	3.15	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	-	-	0.00	-	-	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	-	-	0.15	-	-	0.15	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	-	-	-	0.34	-	-	0.34	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	-	-	-	0.03	-	-	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	-	-	-	0.07	-	-	0.07	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	-	-	-	0.11	-	-	0.11	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	-	-	-	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	-	·	0.08	-	-	0.08	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	-	-	·	0.31	-	-	0.31	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	-	-	-	3.95 0.78	-	-	3.95 0.78	2.40	2.82 0.35	2.55	3.70	5.21	7.21	3.14
Field fungi, % Storage fungi, %	·	-	-	0.78	-	-	0.78	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Ergot, %		-	-	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)	-	-	- -	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00
Poisonous seeds (Argemone mexicana, etc.)	<u> </u>	_	 _	0		<u> </u>	0	0	0	0	0	0		0
Live insects	-	-	-	No	-	-	No	No	No	No	No	No	No	No
Undesirable odour	<u> </u>	-	<u> </u>	No	-	<u> </u>	No	No	No	No	No	No	No	No
		·	<u> </u>											
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	-	-	3	-	-	3	23	14	11	10	11	1	70
Bühler Extraction, %	-	-	-	71.9	-	- 1	71.9	72.8	72.7	72.2	72.8	71.6	73.1	72.5
							<u>^</u>		•	·	· · · · · · · · · · · · · · · · · · ·		·	°
FLOUR														
Colour, KJ (wet)	-	-	-	-3.5	-	-	-3.5	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)														
L*	-	-	-	93.70	-	-	93.70	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	-	-	-	0.50	-	-	0.50	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	-	-	-	10.46	-	-	10.46	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	-	-	-	0.58	-	-	0.58	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	-	-	8.9	-	-	8.9	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	-	-	20.9	-	-	20.9	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	-	-	-	7.3	-	-	7.3	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	-	-	99	-	-	99	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	-		- 1	58.8	-	- 1	58.8	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³		-		837	-		837	1104	1029	987	957	1036	1167	1040
Evaluation	-	-		0	-	-	0	0	0	0	0	0	0	0
	<u> </u>						. °							-
FARINOGRAM														
Water absorption (14% mb), %	-	-	- 1	55.1	-	- 1	55.1	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Development time, min	-	-	-	1.5	-	-	1.5	6.2	5.3	5.0	3.7	4.7	6.5	5.2
Stability, mm	-	-	-	3.0	-	-	3.0	9.0	8.0	7.8	7.3	8.3	9.3	8.3
Mixing tolerance index, BU	-	-	-	54	-	-	54	35	38	39	40	36	34	37
				formation	-						-			
				TT			1							
	-	stere			-				and the second	um-	-			
	-	1 and	the second	Anna		-	-		14-	A fair		-		
	-	11			-	-		-	1					.E.
	-	11					-	_	1		1			T.
	-	1	1			-		-						
		1	-			1.1							-	
	1.00								-	-	-	-	-	the second second second second second second second second second second second second second second second se
		-4								* *				

Country of origin		ŀ	Arger	ntina /	Aver	age			F	SA (Crop	Avera	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT		Average
No. of samples	-	-	-	3	-	-	3	23	14	11	10	11	1	70
	1	•						İ	•			•		
ALVEOGRAM													·	
Strength (S), cm ²	-	-	-	30.5	-	-	30.5	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	-	-	-	79	-	-	79	74	72	77	69	76	71	73
Distensibility (L), mm	-	-	-	73	-	-	73	155	133	116	126	127	120	135
P/L	-	-	-	1.12	-	-	1.12	0.49	0.57	0.68	0.56	0.61	0.59	0.57
		-	/ .	1		Academ			-)				
EXTENSOGRAM														
Strength, cm ²	-	-	- 1	91	-	-	91	113	93	85	89	97	126	99
Max. height, BU	-	-	-	468	-	-	468	388	359	326	368	348	420	364
Extensibility, mm	-	-	- 1	141	-	- 1	141	210	186	184	168	195	217	193
	11111111	(/						2					
MIXOGRAM						<u> </u>								-
Peak time, min	-	-	- 1	5.0	-	- 1	5.0	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	-	-	- 1	58.8	-	- 1	58.8	62.4	61.1	60.9	59.9	61.4	63.0	61.4
				allad Northern	1111	200 年 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	1							
MYCOTOXINS						1								
Aflatoxin Β ₁ (μg/kg)				0 [0]							ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin B ₁ (μg/kg)				0 [0]							ND			
Fumonisin $B_2 (\mu g/kg)$				0 [0]							ND			
Fumonisin B ₃ (µg/kg)				0 [0]							ND			
Deoxynivalenol (µg/kg) [max. value]				737 [73							<100 [5	01]		
15-ADON (μg/kg) [max. value]				0 [0]							ND			
Ochratoxin A (μg/kg)				0 [0]							ND			
Zearalenone (µg/kg)				0 [0]							ND			
HT-2 (μg/kg)				0 [0]							ND			
T-2 Toxin (μg/kg)				0 [0]							ND			
No. of samples				1							40			

2016/2017 IMPORTED WHEAT QUALITY - AUSTRALIA (1 Oct 2016 to 30 Sep 2017)

Country of origin									-		-			
Country of origin	_	r	Austr	r	1	<u> </u>			1		<u> </u>	1	<u> </u>	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	1	-	-	-	-	-	1	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %	12.3	-	-	-	-	-	12.3	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	10.6	-	-	-	-	-	10.6	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	509	-	-	-	-	-	509	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	37.4	-	-	-	-	-	37.4	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	85.3	-	-	-	-	-	85.3	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	1.90	-	-	-	-	-	1.90	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, % Foreign matter, %	0.00	-	-	-	-	-	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02 0.19
Other grain & unthreshed ears, %	0.18	-	-	-	-	-	0.18	0.16	0.16	0.15	0.15	0.31	0.62	0.19
Heat damaged kernels, %	0.40	<u> </u>	-	<u> </u>	-	<u> </u>	0.48	0.04	0.00	0.29	0.29	0.74	0.44	0.40
Immature kernels, %	0.00	<u> </u>	-		<u> </u>	-	0.08	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Insect damaged kernels, %	0.64	<u> </u>	<u> </u>	<u> </u>		 _	0.64	0.36	0.48	0.41	0.49	0.94	0.32	0.00
Heavily frost damaged kernels, %	0.00	-	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.00	-	-	-	-	-	0.00	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	0.72	-	-	-	-	-	0.72	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	3.26	-	-	-	-	-	3.26	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	0.24	-	-	-	-	-	0.24	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	0.00	-	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	0.00	-	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	0	-	-	-	-	-	0	0	0	0	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.)	0	-	-	-	-	-	0	0	0	0	0	0	1	0
Live insects	No	-	-	-	-	-	No	No	No	No	No	No	No	No
Undesirable odour	No	-	-	-	-	-	No	No	No	No	No	No	No	No
		r	r	r		. <u> </u>				. <u> </u>			r	
	B1	B2	B 3	B4	UT	COW	Average	B1	B2	B 3	B4	UT	COW	Average
No. of samples	1	-	-	-	-	-	1	23	14	11	10	11	1	70
Bühler Extraction, %	74.4	-	-	-	-	-	74.4	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR														
Colour, KJ (wet)	-3.7	- 1	- 1	<u> </u>	- 1	- 1	-3.7	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)							1 0							
L*	93.36	-	-	- 1	-	-	93.36	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	0.53	- 1	-	- 1	-	- 1	0.53	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	10.06	- 1	-	- 1	-	-	10.06	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	0.55	-	-	-	-	-	0.55	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	10.9	-	-	-	-	-	10.9	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	28.6	-	-	-	-	-	28.6	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	10.0	-	-	-	-	-	10.0	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	99	-	-	-	-	-	99	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	60.8	-	-	-	-	<u> -</u>	60.8	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³	992	-	-	-	-	-	992	1104	1029	987	957	1036	1167	1040
Evaluation	0	-	-	-	-	-	0	0	0	0	0	0	0	0
FARINGERAM														
FARINOGRAM	50.0	1	1	1		1	50.0	60.0	60.4	60.0	57.0	60.0	507	60.4
Water absorption (14% mb), %	58.8	- -	-	-	-	-	58.8	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Development time, min	8.2			-	-	-	8.2	6.2	5.3	5.0	3.7	4.7	6.5	5.2 8.3
Stability, mm Mixing tolerance index, BU	16.1 15	-	-	-	-	-	16.1 15	9.0 35	8.0 38	7.8 39	7.3 40	8.3 36	9.3 34	8.3 37
	15	-	-	Faitupe	-	-	15	- 35	30	39	40 Femage		34	3/
	-	FT-			1	TT	111	.700	T	1	1 1	1	11	11
		1				1		-	Juni	-	-			
	-	1 mar	and a first			-		-	1-	- Labor		-	-	-
	-	James	-area	There	and the	A Providence of the	Channel & Known of F			-	- June	THE PARTY OF	-fermite	
		-	-	-				-	-	-	1			
	200		-	-		-		mf	-				1 1	
		-	-	1 1				-			1		1.1	
	-							-						-

Country of origin			Austr	alia /	Avera	age			F	RSA (Crop	Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	1		-	-	-	-	1	23	14	11	10	11	1	70
No. of Samples	· ·		<u> </u>	<u> </u>		<u> </u>	<u> </u>	20	14				<u> </u>	
ALVEOGRAM														
Strength (S), cm ²	44.6	-	-	-	-	-	44.6	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	98	-	-	-	-	-	98	74	72	77	69	76	71	73
Distensibility (L), mm	91	-	-	-	-	-	91	155	133	116	126	127	120	135
P/L	1.08	-	-	-	-	-	1.08	0.49	0.57	0.68	0.56	0.61	0.59	0.57
			/		~				-)				
EXTENSOGRAM					-	-						-	18	
Strength, cm ²	119	-	-	-	-	- 1	119	113	93	85	89	97	126	99
Max. height, BU	538	-	- 1	- 1	-	- 1	538	388	359	326	368	348	420	364
Extensibility, mm	165	-	- 1	- 1	-	- 1	165	210	186	184	168	195	217	193
		11	/											
MIXOGRAM														
Peak time, min	3.6	-	-	- 1	-	- 1	3.6	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	60.8	-	-	-	-	- 1	60.8	62.4	61.1	60.9	59.9	61.4	63.0	61.4
		1			-							all all all all all all all all all all		
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]							ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin Β ₁ (μg/kg)				0 [0]							ND			
Fumonisin B ₂ (µg/kg)				0 [0]							ND			
Fumonisin B ₃ (µg/kg)				0 [0]							ND			
Deoxynivalenol (μg/kg) [max. value]				0 [0]							<100 [5	01]		
15-ADON (µg/kg) [max. value]				0 [0]							ND			
Ochratoxin A (µg/kg)				0 [0]							ND			
Zearalenone (µg/kg)				0 [0]							ND			
HT-2 (µg/kg)	1			0 [0]							ND			
T-2 Toxin (μg/kg)				0 [0]							ND			
No. of samples				1							40			

2016/2017 IMPORTED WHEAT QUALITY - CANADA (1 Oct 2016 to 30 Sep 2017)

2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

2010/2017 Imported Wrieat											_	-		
Country of origin			Cana	r	<u> </u>	<u> </u>				SA C	<u> </u>			
Class and Grade bread wheat	B1	B2	B 3	B4	UT	COW		B1	B2	B 3	B4	UT	COW	Average
No. of samples	2	-	-	-	5	-	7	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %	14.4	-	-	-	13.9	-	14.1	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	11.9	-	-	-	11.9	-	11.9	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	388	-	-	-	348	-	360	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	32.8	-	-	-	32.5	-	32.6	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	82.4	-	-	-	81.8	-	81.9	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	1.72	-	-	-	3.21	-	2.78	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	0.00	-	-	-	0.00	-	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	0.09	-	-	-	0.11	-	0.11	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	0.08	-	-	-	1.58	-	1.15	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	0.00	-	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	0.00	-	- .	-	0.00	-	0.00	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	0.10	-		-	0.04	-	0.05	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, % Sprouted kernels, %	0.00	-	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.16
Total damaged kernels, %	0.04	-	-	-	0.05	-	0.05	0.16	0.14	0.11	0.06	1.14	1.09	0.16
Combined deviations, %	2.03	-	·	-	4.99	-	4.14	2.40	2.82	2.55	0.55 3.70	5.21	7.21	3.14
Field fungi, %	0.36	-	- _	-	0.53	-	0.48	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	0.04	-	-	-	0.06	-	0.40	0.02	0.00	0.02	0.43	0.00	0.00	0.00
Ergot, %	0.02	-	-	-	0.02	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	0	-	-	-	0	-	0	0	0	0	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.)	0	-	-	-	0	-	0	0	0	0	0	0	1	0
Live insects	No	-	-	-	No	-	No	No	No	No	No	No	No	No
Undesirable odour	No	-	-	-	No	-	No	No	No	No	No	No	No	No
	B1	B2	B 3	B4	UT	COW	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	2	-	-	-	5	-	7	23	14	11	10	11	1	70
Bühler Extraction, %	71.8	-	-	-	71.6	-	71.6	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR			r	<u> </u>		<u> </u>								
Colour, KJ	-3.2	-	-	-	-3.8	-	-3.6	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry) L*	93.12		- 1	-	93.29	-	93.24	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	0.64	-			0.60	-	0.61	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	10.45	-	-		10.44	-	10.44	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	0.65	-	-	-	0.55	-	0.58	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	13.3	-	<u> </u>	-	12.7	-	12.8	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	36.0	-	-	-	34.1	-	34.6	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	12.5	-	-	-	11.8	-	12.0	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	98	-	-	-	96	-	96	95	93	94	96	93	96	94
								Ì						
100g BAKING TEST														
Baking water absorption, %	64.0	-	-	-	62.7	-	63.1	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³	1094	-	-	-	1108	-	1104	1104	1029	987	957	1036	1167	1040
Evaluation	0	-	-	-	0	-	0	0	0	0	0	0	0	0
	-													
FARINOGRAM						-							,	
FARINOGRAM Water absorption (14% mb), %	61.9	-	-	-	60.5	-	60.9	60.8	60.1	60.2	57.8	60.3	59.7	60.1
FARINOGRAM Water absorption (14% mb), % Development time, min	8.2	-	-	-	7.9	-	8.0	6.2	5.3	5.0	3.7	4.7	6.5	5.2
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3		-		7.9 12.2	-	8.0 12.8	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min	8.2	-	-		7.9	-	8.0	6.2	5.3	5.0	3.7 7.3 40	4.7	6.5	5.2
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-	-	7.9 12.2	-	8.0 12.8	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0 35	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0 35	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0 35	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	8.2 14.3	-	-		7.9 12.2	-	8.0 12.8	6.2 9.0 35	5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3

90

Country of origin	1		Cana	ada A	vera	ae			F	RSA (Crop	Aver	ade	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	2	-	-	-	5	-	7	23	14	11	10	11	1	70
			1						ļ	1			1	
ALVEOGRAM														
Strength (S), cm ²	54.6	-	-	-	47.4	-	49.5	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	85	-	-	-	73	-	76	74	72	77	69	76	71	73
Distensibility (L), mm	146	-	-	-	153	-	151	155	133	116	126	127	120	135
P/L	0.59	-	-	-	0.48	-	0.51	0.49	0.57	0.68	0.56	0.61	0.59	0.57
		-/	1						-/	J			:	
EXTENSOGRAM							-		+					
Strength, cm ²	133	-	-	-	127	-	129	113	93	85	89	97	126	99
Max. height, BU	425	-	-	- 1	424	- 1	424	388	359	326	368	348	420	364
Extensibility, mm	230	-	•	. I	221	-	224	210	186	184	168	195	217	193
MIXOGRAM			•			1.			/					
Peak time, min	3.3	-	-	-	3.1	-	3.1	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	64.0		Hard Hard		63.3	114 11977 1292 1292	63.5	62.4	61.1	60.9	59.9	61.4	63.0	61.4
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]]						ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin B ₁ (µg/kg)				0 [0]							ND			
Fumonisin B ₂ (µg/kg)				0 [0]	-						ND			
Fumonisin B ₃ (µg/kg)				0 [0]]						ND			
Deoxynivalenol (µg/kg) [max. value]				458 [7	45]						<100 [5	01]		
15-ADON (µg/kg)				0 [0]]						ND			
Ochratoxin A (µg/kg)				0 [0]							ND			
Zearalenone (µg/kg) [max. value]				0 [0]]						ND			
HT-2 (μg/kg)				0 [0]]						ND			
T-2 Toxin (μg/kg)				0 [0]]						ND			
No. of samples				3							40			

2016/2017 IMPORTED WHEAT QUALITY - CZECH REPUBLIC (1 Oct 2016 to 30 Sep 2017) 2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

	Qui	ancy	TOI	040				~ ••	neu	L QU	ancy			
Country of origin		Cze	ch Re	epub	lic Av	verag	e		R	SA C	Crop /	Avera	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
			55	D4	01	000	-					-		
No. of samples	-	2	-	-	-	-	2	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %		11.4	-	<u> </u>	. I	Г <u>-</u>	11.4	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %		12.3	-	<u> </u>	 _	 .	12.3	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	354	-		-	-	354	358	361	343	359	349	358	356
			-		-									
1000 Kernel mass (13% mb), g	-	41.5		-	-	-	41.5	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	78.8	-	-	-	-	78.8	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	2.08	-	-	-	-	2.08	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	0.00	-	<u> </u>	-	-	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	0.09	-	-	-	-	0.09	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	-	0.18	-	-	-	-	0.18	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	-	0.00	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	-	0.00	-	-	-	-	0.00	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	- 1	0.12	-	- 1	-	- 1	0.12	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	-	0.00	-	<u> </u>	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	0.36	-	<u> </u>	-	-	0.36	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	-	0.48	-			-	0.48	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %		2.83	-				2.83	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	-	0.28	-	-	-	-	0.28	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	-	0.00	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	-	0.00	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	-	0	-	-	-	-	0	0	0	0	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.)	-	0	-	-	-	-	0	0	0	0	0	0	1	0
Live insects	-	No	-	-	-	-	No	No	No	No	No	No	No	No
Undesirable odour	-	No	-	-	-	-	No	No	No	No	No	No	No	No
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	2	-	-	-	-	2	23	14	11	10	11	1	70
Bühler Extraction, %	-	72.9	-	-	_	-	72.9	72.8	72.7	72.2	72.8	71.6	73.1	72.5
		1 1 2.0		I		I	72.0	. 2.0			1 - 2.0			. 2.0
FLOUR														
				r	r	r								
Colour, KJ	-	-3.1	-	-	-	-	-3.1	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)	<u> </u>	1			. <u> </u>	r —					r		r	
L*	-	93.46	-	-	-	-	93.46	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	-	0.51	-	-	-	-	0.51	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	-	10.21	-	-	-	-	10.21	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	-	0.54	-	-	-	-	0.54	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	9.9	-	-	-	-	9.9	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	26.2	-	-	-	-	26.2	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	-	8.9	-	- 1	-	-	8.9	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	97	-	<u> </u>	-	-								94
	1						97	95	93	94	96	93	96	
							97	95	93	94	96	93	96	
100g BAKING TEST							97	95	93	94	96	93	96	
100g BAKING TEST		50.7		1		, ,								61.2
Baking water absorption, %	-	59.7	-	-	-	-	59.7	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Baking water absorption, % Loaf volume, cm ³	-	861	-	-	-	-	59.7 861	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	1040
Baking water absorption, %		1		-			59.7	62.4	61.3	60.8	59.7	61.3	63.0	
Baking water absorption, % Loaf volume, cm ³ Evaluation	-	861	-	-	-	-	59.7 861	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	1040
Baking water absorption, % Loaf volume, cm ³	-	861	-	-	-	-	59.7 861	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	1040
Baking water absorption, % Loaf volume, cm ³ Evaluation	-	861	-		-	-	59.7 861	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	1040
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM	-	861 0	-	-	-	-	59.7 861 0	62.4 1104 0	61.3 1029 0	60.8 987 0	59.7 957 0	61.3 1036 0	63.0 1167 0	1040 0
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), %	-	861 0 56.4	-	-	-	-	59.7 861 0 56.4	62.4 1104 0 60.8	61.3 1029 0	60.8 987 0	59.7 957 0 57.8	61.3 1036 0	63.0 1167 0 59.7	1040 0 60.1
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2	61.3 1029 0 60.1 5.3	60.8 987 0 60.2 5.0	59.7 957 0 57.8 3.7	61.3 1036 0 60.3 4.7	63.0 1167 0 59.7 6.5	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min	- - -	861 0 56.4 2.0	-	-	- - -	-	59.7 861 0 56.4 2.0	62.4 1104 0 60.8 6.2 9.0	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - -	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - -	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - -	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - -	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - -	861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0 35	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0 35	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0 35	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0 35	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		861 0 56.4 2.0 8.7	-	-	- - -	-	59.7 861 0 56.4 2.0 8.7	62.4 1104 0 60.8 6.2 9.0 35	61.3 1029 0 60.1 5.3 8.0	60.8 987 0 60.2 5.0 7.8	59.7 957 0 57.8 3.7 7.3 40	61.3 1036 0 60.3 4.7 8.3	63.0 1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3

Country of origin	[Cze	ch R	epub	lic A	verag	le		F	RSA (Crop	Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	1	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	2	-	-	-	-	2	23	14	11	10	11	1	70
			1										1 -	
ALVEOGRAM														
Strength (S), cm ²	-	33.2	-	-	-	-	33.2	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	-	77	-	-	-	-	77	74	72	77	69	76	71	73
Distensibility (L), mm	-	94	-	-	-	-	94	155	133	116	126	127	120	135
P/L	-	0.82	-	-	-	-	0.82	0.49	0.57	0.68	0.56	0.61	0.59	0.57
		-/	/						-	5				
EXTENSOGRAM		<u></u>	i.			- 10	-		÷		*		100	-1946
Strength, cm ²	-	89	- 1	-	-	- 1	89	113	93	85	89	97	126	99
Max. height, BU	-	410	- 1	- 1	-	-	410	388	359	326	368	348	420	364
Extensibility, mm	-	154	-	- 1	-	-	154	210	186	184	168	195	217	193
		(/	7					1					
MIXOGRAM														
Peak time, min	-	3.6	- 1	1	- 1	1	3.6	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	-	59.8	-	<u> </u>	-	<u> </u>	59.8	62.4	61.1	60.9	59.9	61.4	63.0	61.4
			alihaa Mi ⁿ							lled pipe i				
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]						ND			
Aflatoxin B ₂ (µg/kg)				0]0				Ì			ND			
Aflatoxin G ₁ (µg/kg)				0]0							ND			
Aflatoxin G ₂ (µg/kg)				0 [0							ND			
Fumonisin Β ₁ (μg/kg)				0 [0]						ND			
Fumonisin B ₂ (µg/kg)				0 [0]						ND			
Fumonisin B ₃ (µg/kg)				0 [0							ND			
Deoxynivalenol (µg/kg) [max. value]				0 [0]						<100 [5	01]		
15-ADON (µg/kg) [max. value]				0 [0							ND			
Ochratoxin A (µg/kg)				0 [0							ND			
Zearalenone (µg/kg) [max. value]				0]0							ND			
HT-2 (μg/kg)				0]0							ND			
T-2 Toxin (μg/kg)				0 [0							ND			
No. of samples				1							40			

2016/2017 IMPORTED WHEAT QUALITY - GERMANY (1 Oct 2016 to 30 Sep 2017)

												A		
Country of origin		1	1	any /	1	<u> </u>				1	rop		<u> </u>	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	-	33	2	2	-	-	37	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %	-	11.4	10.8	11.4	-	-	11.4	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	11.7	11.4	11.8	-	- 1	11.7	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	334	291	326	-	-	331	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	42.6	43.0	45.2	-	-	42.8	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	79.5	78.8	80.5	-	-	79.5	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	1.81	2.16	3.22	-	-	1.90	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	0.00	0.00	0.00	-	-	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	0.10	0.33	0.11	-	-	0.12	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	-	0.30	0.41	0.30	-	-	0.30	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	-	0.00	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	-	0.01	0.00	0.00	-	-	0.01	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	-	0.06	0.04	0.00	-	-	0.06	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	-	0.01	0.00	0.00	-	·	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	0.20	0.58	0.34	-	-	0.23	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, % Combined deviations, %	-	0.27	0.62	0.34	-	·	0.29	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Field fungi, %	-	2.48	3.52 1.58	3.97 0.23	-	-	2.62 0.42	2.40 0.32	2.82 0.35	2.55 0.32	3.70 0.43	5.21 0.41	7.21 0.57	3.14 0.36
Storage fungi, %	-	0.36	0.00	0.23	-		0.42	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Ergot, %	-	0.01	0.00	0.00	-	- .	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)		0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	1	0.00
Poisonous seeds (<i>Argemone mexicana, etc.</i>)	-	0	0	0	-	-	0	0	0	0	0	0	1	0
Live insects	-	No	No	No	-	-	No	No	No	No	No	No	No	No
Undesirable odour	-	No	No	No	-	-	No	No	No	No	No	No	No	No
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	-	33	2	2	-	-	37	23	14	11	10	11	1	70
Bühler Extraction, %	-	73.3	72.6	73.6	-	-	73.3	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR														
Colour, KJ	-	-3.2	-3.0	-3.1	-	-	-3.2	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)		,	,	,		,	·				·			
L*	-	93.50		93.46	-	-	93.49	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	-	0.49	0.53	0.52	-	-	0.49	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	-	10.01	9.12	10.22	-	-	9.97	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	-	0.50	0.54	0.53	-	-	0.50	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	10.0	9.5	9.9	-	-	10.0	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	26.5	24.7	27.4	-	-	26.4	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	-	9.2	8.2	9.8	-	-	9.1	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	97	96	98	-	-	97	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	-	59.8	59.3	59.8	-	- 1	59.8	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³	-	908	860	878	-	-	904	1104	1029	987	957	1036	1167	1040
Evaluation	-	0	0	0	-	- 1	0	0	0	0	0	0	0	0
														· · · ·
FARINOGRAM														
Water absorption (14% mb), %	-	56.6	55.9	57.0	-	-	56.6	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Development time, min	-	2.1	1.9	1.8	-	-	2.1	6.2	5.3	5.0	3.7	4.7	6.5	5.2
Stability, mm	-	7.3	3.9	5.9	-	-	7.0	9.0	8.0	7.8	7.3	8.3	9.3	8.3
Mixing tolerance index, BU	- 1	39	54	42	-	- 1	40	35	38	39	40	36	34	37
				Terraper							famper			
	-	17							+				1	
					-		and the second se	-		and a second at	1000	-		
	-	mo				1			1 marine	and the second s	-	-	1	
		m			-			-	1 million			-		-
	111	-				-		-	1 million			12		
	1 1 1							=/	F					
	1 1 1 1								F.					
								1	F					
					W			1				4		

Country of origin	1	(Germ	any A	vera	ade			F	RSA (Crop	Aver	ade	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	33	2	2	-	-	37	23	14	11	10	11	1	70
ALVEOGRAM														
Strength (S), cm ²	-	34.1	26.6	34.3	-	-	33.7	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	-	80	77	78	-	-	79	74	72	77	69	76	71	73
Distensibility (L), mm	-	94	72	99	-	-	93	155	133	116	126	127	120	135
P/L	-	0.88	1.11	0.79	-	-	0.88	0.49	0.57	0.68	0.56	0.61	0.59	0.57
		-	/							/				
EXTENSOGRAM		-	-			-	1,000		-			-	14	-
Strength, cm ²	 _	90	73	91	-	1 -	89	113	93	85	89	97	126	99
Strengtn, cm² Max. height, BU	-	90 417	364	91 423	-	-	414	388	359	326	368	97 348	420	99 364
Extensibility, mm													420 217	364 193
	- 155 144 155 154 210 186 184 168 195													
MIXOGRAM														
Peak time, min	-	3.7	3.6	3.6	-	- 1	3.7	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	-	59.8	59.3	59.8	_		59.8	62.4	61.1	60.9	59.9	61.4	63.0	61.4
			Career of							phe de	10 m	「「「「「「」」		
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]							ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin Β ₁ (μg/kg)				0 [0]							ND			
Fumonisin B_2 (µg/kg)	Î			0 [0]							ND			
Fumonisin B_3 (µg/kg)				0 [0]							ND			
Deoxynivalenol (µg/kg) [max. value]	1			0 [0]							<100 [5	01]		
15-ADON (µg/kg)	1			0 [0]							ND			
Ochratoxin A (µg/kg)	1			0 [0]							ND			
Zearalenone (µg/kg)				0 [0]							ND			
HT-2 (µg/kg) [max. value]				0 [0]							ND			
T-2 Toxin (μg/kg)				0 [0]							ND			
No. of samples				10							40			

2016/2017 IMPORTED WHEAT QUALITY - LATVIA (1 Oct 2016 to 30 Sep 2017)

Country of origin		J								SA C	-	Avor	200	
Class and Grade bread wheat	B1	B2	B3	B4		cow	Average	B1	B2	B3	В4	UT	cow	Average
No. of samples	3				-	1	Average 4	130	91	33	28	48	7	337
		<u> </u>				<u> </u>	7	130	31	33	20	40		- 337
WHEAT														
GRADING	 		. <u> </u>	. <u> </u>	. <u> </u>									
Protein (12% mb), %	12.7	-	-	-	-	12.5	12.7	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	12.5	-	-	-	-	12.5	12.5	9.9	9.8 361	9.8 343	9.9 359	9.7 349	10.2 358	9.9 356
Falling number, sec 1000 Kernel mass (13% mb), g	294 40.1	-	-	-	-	300 40.8	296 40.3	358 37.7	39.6	40.5	37.8	349	35.6	38.6
Hlm (dirty), kg/hl	78.7	-	<u> </u>			78.5	78.6	81.7	82.0	40.5 81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	2.16	-	-	-	-	2.39	2.22	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	0.00	-	-	- 1	-	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	0.07	-	-	- 1	- 1	0.10	0.08	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	0.27	-	- 1	- 1	- 1	0.20	0.26	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	0.00	-	- 1	- 1	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	0.12	-	-	-	-	0.08	0.11	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	0.07	-	-	-	-	0.08	0.07	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	0.00	-	-	<u> </u>	<u> </u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.08	-	-	-	-	0.08	0.08	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	0.27	-	-	-	-	0.24	0.26	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	2.77	-	-	-	-	2.93	2.81	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	0.19	-	-	-	-	0.24	0.21	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, % Ergot, %	0.00	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)	0.00	-	-		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00
Poisonous seeds (<i>Argemone mexicana, etc.</i>)	6	-	-	<u> </u>	<u> </u>	8	6	0	0	0	0	0		0
Live insects	No	-	-	<u> </u>	-	No	No	No	No	No	No	No	No	No
Undesirable odour	No	-	-	-	-	No	No	No	No	No	No	No	No	No
						1								
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	3	-	-	-	-	1	4	23	14	11	10	11	1	70
Bühler Extraction, %	71.8	-	-	-	-	71.4	71.7	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR			·	·	·	·								
Colour, KJ	-2.8	-	-	-	-	-3.0	-2.9	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)		. <u> </u>	r	r	r	1						00.77		
L*	93.16	-	-		-	93.08	93.14	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*b*	0.55 9.62	-	-	-	-	0.55 9.75	0.55 9.66	0.46 9.91	0.49	0.44	0.45 10.48	0.43 10.05	0.44	0.46
Ash (db), %	0.52	-	-	-	-	0.55	9.66 0.53	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	11.5	-	-			11.4	11.5	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	31.4	-	-	<u> </u>	<u> </u>	30.7	31.2	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	11.1	-	-	-	-	10.8	11.1	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	68	-	-	-	- 1	98	76	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	61.6	-	-	-	-	61.4	61.5	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³	1029	-	-	-	-	1078	1041	1104	1029	987	957	1036	1167	1040
Evaluation	0	-	-	-	-	0	0	0	0	0	0	0	0	0
FARINOGRAM		,									,,			
Water absorption (14% mb), %	57.6	-	-	-	-	57.3	57.5	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Development time, min	3.5	-	-	-	-	2.9	3.3	6.2	5.3	5.0	3.7	4.7	6.5	5.2
Stability, mm	12.0	-	-	-	-	9.8	11.5	9.0	8.0	7.8	7.3	8.3	9.3	8.3
Mixing tolerance index, BU	28	-	-	-	-	39	31	35	38	39	40	36	34	37
	-	-	-	tyinge		-	1		-		Farmper	E	7 1	-
	-	-		di-c		Jan		-	land				-	
	-	1 minut	many	-		-	-	-	Allena	T	-	-	-	-
		Samo	-	ricin		-there -		- 1	(martine		1			
	-			1	-	-		-/		-	-			-
	1	1.11		1 4		1 1			1.11		1		1 1	-
		C - ferr P		-	-	-			C					
	-							1			11			
	-				u			7				-		

Country of origin	T		Laty	/ia Av	/erac	ie		Γ	F	RSA (Crop	Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	3	-	-	-	-	1	4	23	14	11	10	11	1	70
No. of sumples								20						70
ALVEOGRAM														
Strength (S), cm ²	37.1	-	-	-	-	37.0	37.1	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	89	-	-	-	-	83	88	74	72	77	69	76	71	73
Distensibility (L), mm	83	-	-	-	-	91	85	155	133	116	126	127	120	135
P/L	1.09	-	-	-	-	0.91	1.05	0.49	0.57	0.68	0.56	0.61	0.59	0.57
		-							-					
		-/	1						-/	/				
EXTENSOGRAM		4		-		- 100	-1941						114	-
Strength, cm ²	99	-	- 1	- 1	- 1	96	98	113	93	85	89	97	126	99
Max. height, BU	431	-	-	-	- 1	388	420	388	359	326	368	348	420	364
Extensibility, mm	167	-	-	-	-	181	170	210	186	184	168	195	217	193
		<	/	~				1						
MIXOGRAM			*	e 3					•	• •				
Peak time, min	4.5	-	- 1	- 1	-	4.3	4.4	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	61.6	-				61.4	61.5	62.4	61.1	60.9	59.9	61.4	63.0	61.4
			Land Appr	nthe had		壁 生				line it	100 m			
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)	1			0 [0]]						ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin B_1 (µg/kg)				0 [0]							ND			
Fumonisin B_{2} (µg/kg)				0 [0]							ND			
Fumonisin B ₃ (μ g/kg)				0 [0]							ND			
Deoxynivalenol (µg/kg) [max. value]				0 [0]							<100 [5	01]		
15-ADON (µg/kg)				0 [0]							ND			
Ochratoxin A (µg/kg)				0 [0]							ND			
Zearalenone (µg/kg)				0 [0]							ND			
HT-2 (µg/kg)				0 [0]							ND			
T-2 Toxin (μg/kg)				0 [0]							ND			
No. of samples														

2016/2017 IMPORTED WHEAT QUALITY - POLAND (1 Oct 2016 to 30 Sep 2017)

Country of origin					verag					SA (-	Aver	200	
Class and Grade bread wheat	B1	B2	B3	B4	veraç UT	je cow	Average	B1	B2	B3	В4	UT	cow	Average
No. of samples	1	-			4	3	8	130	91	33	28	48	7	337
	<u> </u>			ļ	-			100	01	00	20	10	ŕ	
WHEAT														
GRADING	12.0		r	,	12.2	11.0	42.2	12.0	44.5	44.0	44.0	44.4	12.0	10.0
Protein (12% mb), % Moisture, %	13.0 11.3	-	-	-	12.2	11.9 12.0	12.2 12.0	13.0 9.9	11.5 9.8	11.0 9.8	11.0 9.9	11.4 9.7	13.6 10.2	12.0 9.9
Falling number, sec	319	-		-	306	312	310	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	41.6	-	-	-	39.2	41.2	40.2	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	79.7	-	-	-	76.1	79.8	78.0	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	1.74	-	-	-	7.51	13.40	9.00	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	0.00	-	-	-	0.08	0.00	0.04	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	0.20	-	-	-	0.34	0.36	0.33	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	0.80	-	-	-	0.38	0.45	0.46	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	0.00	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, % Insect damaged kernels, %	0.00	-	-	-	0.00	0.00	0.00	0.04	0.03	0.04	0.01	0.04 0.94	0.03	0.03 0.49
Heavily frost damaged kernels, %	0.00	-	-	-	0.09	0.00	0.00	0.30	0.46	0.41	0.49	0.94	0.32	0.49
Sprouted kernels, %	0.16	-	-	-	0.00	0.10	0.13	0.00	0.00	0.00	0.00	0.00	1.09	0.00
Total damaged kernels, %	0.24	-	-	-	0.22	0.26	0.24	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	2.98	-	-	-	8.44	14.47	10.02	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	0.96	-	-	-	0.90	0.66	0.82	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	0.00	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	0.00	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	0	-	-	-	0	0	0	0	0	0	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.)	0	-	-	-	0	0	0	0	0	0	0	0	1	0
Live insects	No	-	-	-	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	-	-	-	No	No	No	No	No	No	No	No	No	No
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	1	-	-	-	4	3	8	23	14	11	10	11	1	70
Bühler Extraction, %	72.1	-	-	-	71.6	72.8	72.1	72.8	72.7	72.2	72.8	71.6	73.1	72.5
							•							
FLOUR							,							
Colour, KJ	-2.9	-	-	-	-2.8	-3.0	-2.9	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)			. <u> </u>				1							
L*	93.09	-	-	-	93.28	92.99	93.15	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*b*	0.52	-	-	-	0.53	0.49	0.51	0.46 9.91	0.49	0.44	0.45	0.43 10.05	0.44	0.46
Ash (db), %	10.46 0.54	-	-	-	9.48 0.57	9.55 0.55	9.63 0.56	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	11.4	-	-	-	10.7	10.5	10.7	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	30.7	-	-	-	28.6	28.3	28.8	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	11.1	-	-	-	9.9	9.7	9.9	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	99	-	-	-	98	98	98	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	61.4	-	-	-	60.6	60.4	60.7	62.4	61.3	60.8	59.7	61.3	63.0	61.3
Loaf volume, cm ³	982	-	-	-	952	948	955	1104	1029	987	957	1036	1167	1040
Evaluation	0	-	-	-	0	0	0	0	0	0	0	0	0	0
FARINOGRAM														
Water absorption (14% mb), %	59.1	-	- 1	-	56.3	56.9	56.9	60.8	60.1	60.2	57.8	60.3	59.7	60.1
	1		-	-	2.3	2.3	2.4	6.2	5.3	5.0	3.7	4.7	6.5	5.2
Development time, min	2.8	-								7.8	7.3	8.3	9.3	8.3
	2.8 13.4	-	- 1	-	9.1	7.1	8.9	9.0	8.0	1.0	1.5	0.5	0.0	
Development time, min			-	-	9.1 38	7.1 42	8.9 38	9.0 35	8.0 38	39	40	36	34	37
Development time, min Stability, mm	13.4	-		- Telege							 		ł – – –	
Development time, min Stability, mm	13.4	-		-							40		ł – – –	
Development time, min Stability, mm	13.4 29	-		-							40		ł – – –	
Development time, min Stability, mm	13.4	-		-				35			40		ł – – –	
Development time, min Stability, mm	13.4 29	-		-				35			40		ł – – –	
Development time, min Stability, mm	13.4 29	-		-				35			40		ł – – –	
Development time, min Stability, mm	13.4 29	-		-				35			40		ł – – –	
Development time, min Stability, mm	13.4 29	-		-				35			40		ł – – –	

Country of origin	1		Pola	nd A	verag	ae			F	RSA (Crop	Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	1	-	-		4	3	8	23	14	11	10	11	1	70
						1							<u>,</u>	
ALVEOGRAM														
Strength (S), cm ²	50.9	-	-	-	38.2	36.6	39.2	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	93	-	-	-	72	75	75	74	72	77	69	76	71	73
Distensibility (L), mm	112	-	-	-	121	106	114	155	133	116	126	127	120	135
P/L	0.83	-	-	-	0.60	0.71	0.67	0.49	0.57	0.68	0.56	0.61	0.59	0.57
EXTENSOGRAM					-	18	-						14	-
Strength, cm ²	135	-	- 1	- 1	98	104	105	113	93	85	89	97	126	99
Max. height, BU	518	-	-	-	413	480	451	388	359	326	368	348	420	364
Extensibility, mm	192	-	-	-	172	158	169	210	186	184	168	195	217	193
		1							<			j		
MIXOGRAM														
Peak time, min	4.9	-	-	-	4.1	3.9	4.1	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	61.4	ter	10.00			60.4	60.7	62.4	61.1	60.9	59.9	61.4	63.0	61.4
			indiates Arendistr	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						(alease	11			
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]]						ND			
Aflatoxin B ₂ (µg/kg)				0 [0							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]						ND			
Aflatoxin G ₂ (µg/kg)				0 [0							ND			
Fumonisin B ₁ (μg/kg)				0 [0]						ND			
Fumonisin B ₂ (µg/kg)				0 [0]						ND			
Fumonisin B ₃ (µg/kg)				0 [0							ND			
Deoxynivalenol (μg/kg) [max. value]				143 [2							<100 [5	01]		
15-ADON (µg/kg)				0 [0]						ND			
Ochratoxin A (µg/kg)				0 [0							ND			
Zearalenone (µg/kg)				<20 [2	20]						ND			
HT-2 (μg/kg)				0 [0]						ND			
T-2 Toxin (μg/kg)				0 [0							ND			
No. of samples				3							40			

2016/2017 IMPORTED WHEAT QUALITY - ROMANIA (1 Oct 2016 to 30 Sep 2017)

2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin			Roma							RSA C		Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	2	1	-	-	6	9	130	91	33	28	48	7	337
WHEAT GRADING														
Protein (12% mb), %	<u> </u>	11.3	10.8	_	<u> </u>	10.4	10.6	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	11.0	10.0	-	-	11.8	11.4	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	- 1	386	383	-	- 1	352	363	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	41.1	38.8	-	- 1	38.7	39.2	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	80.4	78.1	-	- 1	77.7	78.3	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	2.27	2.33	-	<u> </u>	3.19	2.89	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	0.00	0.00	-	-	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	0.38	0.12	-	-	0.18	0.22	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, % Heat damaged kernels, %	-	0.19	0.16	-	-	0.23	0.21	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Immature kernels, %	-	0.00	0.00	-	-	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Insect damaged kernels, %	-	0.14	0.00	-	-	0.03	0.00	0.36	0.48	0.41	0.49	0.94	0.32	0.00
Heavily frost damaged kernels, %	- 1	0.00	0.00	-	- 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	0.37	0.16	-	-	0.19	0.23	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	-	0.51	0.16	-	-	0.26	0.30	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	-	3.35	2.77	-	-	3.86	3.62	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	-	0.41	0.24	-	-	0.20	0.25	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	-	0.00	0.00	-	-	0.08	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	-	0.00	0.00	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)	-	0	0	-	-	0 14	0 10	0	0	0	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.) Live insects	- _	No	4 No	-	<u> </u>	No	No	No	No	No	No	No	No	No
Undesirable odour	-	No	No	-	-	No	No	No	No	No	No	No	No	No
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	-	2	1	-	-	6	9	23	14	11	10	11	1	70
Bühler Extraction, %	-	73.8	73.3	-	-	72.6	72.9	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR	<u> </u>				<u> </u>									
Colour, KJ	-	-3.2	-3.1	-	-	-3.1	-3.1	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry) L*	-	92.83	93.31		<u> </u>	93.19	93.12	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*		0.48	0.42	-		0.36	0.39	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	- 1		10.28	-	-	10.02		9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	- 1	0.53	0.54	-	- 1	0.50	0.51	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	9.8	9.3	-	- 1	9.0	9.2	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	25.2	22.3	-	- 1	21.6	22.5	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	-	8.8	7.7	-	-	7.8	8.0	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	99	98	-	-	99	99	95	93	94	96	93	96	94
100g BAKING TEST		50.0	50.4			50.4	50.0	60.4	64.0	60.0	507	64.0	62.0	64.0
Baking water absorption, % Loaf volume, cm ³	-	59.6 892	59.1 861	-	-	58.4 857	58.8 865	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	61.3 1040
Evaluation	-	0	0	-	-	0	0	0	0	987	957	1036	0	0
		<u> </u>	<u> </u>	L		L Č	, v		<u> </u>	Ľ	<u> </u>	L Ť	<u> </u>	Ļ
FARINOGRAM														
Water absorption (14% mb), %	-	57.4	55.5	-	-	55.2	55.7	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Development time, min	-	4.7	1.5	-	-	1.5	2.2	6.2	5.3	5.0	3.7	4.7	6.5	5.2
Stability, mm	-	12.1	6.6	-	-	5.5	7.1	9.0	8.0	7.8	7.3	8.3	9.3	8.3
Mixing tolerance index, BU	-	27	36	-	-	39	36	35	38	39	40	36	34	37
	-			Fairingen				-			-			
		-		1			-	-			1	and and		
		mine		-	-		-	-	how		-	-		
	-	rem	-		-	2	-	-	Ger	-	-			
	-1	alle -		-				-	1	-	4	and and	1	
	100 100									and the second second			1.	
	-			-	-	1		-1	-	-	- fund		-	
	-				-			=			-			
		-						-						

100

Country of origin	1	-	Roma	nia /	Avera	ade	RSA Crop Average										
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average			
No. of samples	-	2	1	-	-	6	9	23	14	11	10	11	1	70			
		<u>,</u>		<u>,</u>	1	1						1					
ALVEOGRAM																	
Strength (S), cm ²	-	34.9	22.9	-	-	22.9	25.6	42.4	34.9	34.1	31.3	36.2	37.8	37.0			
Stability (P), mm	-	91	75	-	-	75	78	74	72	77	69	76	71	73			
Distensibility (L), mm	-	82	57	-	-	61	65	155	133	116	126	127	120	135			
P/L	-	1.13	1.32	-	-	1.27	1.24	0.49	0.57	0.68	0.56	0.61	0.59	0.57			
			/	+)							
EXTENSOGRAM		+		-					-			-	in in	-			
Strength, cm ²	-	92	65	-	-	64	70	113	93	85	89	97	126	99			
Max. height, BU	-	448	327	-	-	320	349	388	359	326	368	348	420	99 364			
Extensibility, mm	-	146	138	-	-	137	139	210	186	184	168	348 195	217	193			
MIXOGRAM																	
Peak time, min	-	3.4	4.8	-	-	4.8	4.5	2.6	2.5	2.6	2.8	2.5	2.9	2.6			
Water absorption (14% mb), %		59.6	4.0 59.1	-	-	58.9	4.5 59.1	62.4	61.1	60.9	2.0 59.9	61.4	63.0	61.4			
MYCOTOXINS																	
Aflatoxin B ₁ (µg/kg)				0 [0]				ND									
Aflatoxin B ₂ (µg/kg)				0 [0]							ND						
Aflatoxin G ₁ (µg/kg)				0 [0]							ND						
Aflatoxin G ₂ (µg/kg)				0 [0]				ND									
Fumonisin B ₁ (μg/kg)				0 [0]				ND									
Fumonisin B ₂ (µg/kg)				0 [0]				ND									
Fumonisin B ₃ (µg/kg)				0 [0]				ND									
Deoxynivalenol (µg/kg) [max. value]				0 [<10	00]						<100 [5	01]					
15-ADON (µg/kg)				0 [0]							ND						
Ochratoxin A (µg/kg)				0 [0]							ND						
Zearalenone (µg/kg)				0 [0]							ND						
HT-2 (μg/kg)				0 [0]							ND						
T-2 Toxin (μg/kg)				0 [0]							ND						
No. of samples				3							40						

2016/2017 IMPORTED WHEAT QUALITY - RUSSIAN FEDERATION (1 Oct 2016 to 30 Sep 2017)

2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin	R	lussi	an Fe	edera	tion	Aver	age		R	SA C	rop	Avera	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	COW	Average	B1	B2	B3	B4	UT	COW	Average
No. of samples	-	-	-	-	4	18	22	130	9 1	33	28	48	7	337
WHEAT		•	•	0	0	n								
GRADING														
Protein (12% mb), %	-	- 1	- 1	- 1	11.1	11.0	11.0	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	-	-	-	10.8	11.1	11.0	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	-	-	-	298	353	343	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	-	-	-	37.6	37.6	37.6	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	-	-	-	76.2	77.1	76.9	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	-	-	-	4.65	4.61	4.62	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	-	-	-	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	-	-	-	0.27	0.21	0.22	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	-	-	-	-	0.43	0.39	0.40	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	-	-	-	-	0.02	0.03	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	-	-	-	-	0.00	0.00	0.00	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	-	-	-	-	0.22	0.32	0.30	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	-	-	-	1.22	0.29	0.46	0.16 0.56	0.14 0.64	0.11	0.06 0.55	0.16 1.14	1.09 1.45	0.16 0.68
Total damaged kernels, % Combined deviations, %	·	-	-	-	1.45 6.79	0.65 5.89	0.79 6.03		0.64 2.82	2.55		1.14 5.21	1.45 7.21	0.68 3.14
Field fungi, %	·	-	-	-	0.25	0.23	0.23	2.40 0.32	0.35	0.32	3.70 0.43	5.21 0.41	0.57	3.14 0.36
Storage fungi, %	- .	-	-	-	0.25	0.23	0.23	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Ergot, %	-	-	-	-	0.08	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00
Poisonous seeds (<i>Argemone mexicana, etc.</i>)	-	-	-	-	5	24	20	0	0	0	0	0	1	0
Live insects	-	-	-	-	No	No	No	No	No	No	No	No	No	No
Undesirable odour	-	-	-	-	No	No	No	No	No	No	No	No	No	No
	B1	B2	B 3	B4	UT	COW	Average	B1	B2	B3	B 4	UT	COW	Average
No. of samples	-	-	-	-	4	18	22	23	14	11	10	11	1	70
Bühler Extraction, %	-	-	-	-	73.3	72.8	72.9	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR				·	·									
Colour, KJ	-	-	-	-	-2.6	-2.7	-2.7	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)		·	·	·	·									
L*	-	-	-	-	93.14	93.11	93.11	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	-	-	-	-	0.48	0.48	0.48	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	-	-	-	-	11.73		11.26	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	-	-	-	-	0.55	0.57	0.56	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	-	-	-	9.9	9.8	9.8	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), % Dry Gluten (14% mb), %	-	-	-	-	25.5	24.9	25.0	33.0	30.7	29.5	25.9	31.0	34.3	30.7
	-	-	-	-	8.5	8.4	8.4	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	-	-		97	97	97	95	93	94	96	93	96	94
100g BAKING TEST														
-	-	- 1	- 1	-	597	59.6	59.6	62.4	61.3	60.8	597	61.3	63.0	61.3
Baking water absorption, %	-	-	-	-	59.7 862	59.6 867	59.6 866	62.4 1104	61.3 1029	60.8 987	59.7 957	61.3 1036	63.0 1167	61.3 1040
					59.7 862 0	59.6 867 0	59.6 866 0	62.4 1104 0	61.3 1029 0	60.8 987 0	59.7 957 0	61.3 1036 0	63.0 1167 0	61.3 1040 0
Baking water absorption, % Loaf volume, cm ³		-			862	867	866	1104	1029	987	957	1036	1167	1040
Baking water absorption, % Loaf volume, cm ³		-			862	867	866	1104	1029	987	957	1036	1167	1040
Baking water absorption, % Loaf volume, cm ³ Evaluation		-			862	867	866	1104	1029	987	957	1036	1167	1040
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM	-	-	-	-	862 0	867 0	866 0	1104 0	1029 0	987 0	957 0	1036 0	1167 0	1040 0
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), %	-	-	-	-	862 0 57.9	867 0 56.7	866 0 56.9	1104 0 60.8	1029 0 60.1	987 0 60.2	957 0 57.8	1036 0 60.3	1167 0 59.7	1040 0 60.1
Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min	-	- - -	- - -	- - -	862 0 57.9 2.1	867 0 56.7 2.3	866 0 56.9 2.2	1104 0 60.8 6.2	1029 0 60.1 5.3	987 0 60.2 5.0	957 0 57.8 3.7	1036 0 60.3 4.7	1167 0 59.7 6.5	1040 0 60.1 5.2
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	- - -	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Baking water absorption, % Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	- - -	- - -	-	862 0 57.9 2.1 8.0	867 0 56.7 2.3 7.0	866 0 56.9 2.2 7.2	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3

102

Country of origin	R	ussi	an Fe	edera	tion	Aver	RSA Crop Average									
Class and Grade bread wheat	Russian Federation Average B1 B2 B3 B4 UT COW Average							B1	COW Avera							
No. of samples	-	-	-	-	4	18	22	23	14	11	10	11	1	70		
		<u> </u>	<u></u>	ļ	<u> </u>								. ·			
ALVEOGRAM																
Strength (S), cm ²	-	-	-	-	32.9	30.5	30.9	42.4	34.9	34.1	31.3	36.2	37.8	37.0		
Stability (P), mm	-	-	-	-	95	89	90	74	72	77	69	76	71	73		
Distensibility (L), mm	-	-	-	-	65	63	64	155	133	116	126	127	120	135		
P/L	-	-	-	-	1.47	1.44	1.45	0.49	0.57	0.68	0.56	0.61	0.59	0.57		
			/	T		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
EXTENSOGRAM				h		10	penti		-				198	-		
Strength, cm ²	-	-	-	- 1	81	82	82	113	93	85	89	97	126	99		
Max. height, BU	-	-	-	-	414	419	418	388	359	326	368	348	420	364		
Extensibility, mm	-	-	-	-	143	143	143	210	186	184	168	195	217	193		
	11111.	(/)												
MIXOGRAM									-							
Peak time, min	-	-	- 1	<u> </u>	4.0	4.5	4.4	2.6	2.5	2.6	2.8	2.5	2.9	2.6		
Water absorption (14% mb), %	-	-			59.7	59.6	59.6	62.4	61.1	60.9	59.9	61.4	63.0	61.4		
MYCOTOXINS																
Aflatoxin B ₁ (µg/kg)				0 [0]]						ND					
Aflatoxin B ₂ (µg/kg)				0 [0]]						ND					
Aflatoxin G ₁ (μg/kg)				0 [0]]						ND					
Aflatoxin G ₂ (µg/kg)				0 [0]]			ND								
Fumonisin Β ₁ (μg/kg)				0 [0]]			ND								
Fumonisin B ₂ (µg/kg)				0 [0]]			ND								
Fumonisin B ₃ (µg/kg)				0 [0]]						ND					
Deoxynivalenol (µg/kg) [max. value]				0 [<10	00]						<100 [5	01]				
15-ADON (μg/kg)				0 [0]]						ND					
Ochratoxin A (µg/kg)				0 [0]							ND					
Zearalenone (µg/kg) [max. value]				0 [0]]						ND					
HT-2 (μg/kg)				0 [0]]						ND					
T-2 Toxin (µg/kg)				0 [0]							ND					
No. of samples				6							40					

2016/2017 IMPORTED WHEAT QUALITY - UKRAINE (1 Oct 2016 to 30 Sep 2017) 2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin			Ukra	ine A	vera	ge			R	SA C	Crop	Avera	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	-	-	-	-	4	4	130	91	33	28	48	7	337
							<u>,</u>							
WHEAT														
GRADING			,			,					·			·
Protein (12% mb), %	-	-	-	-	-	11.2	11.2	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	-	-	-	-	11.5	11.5	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	-	-	-	-	325	325	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	-	-	-	-	37.2	37.2	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	-	-	-	-	62.4	62.4	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), %	-	-	-	-	-	6.66	6.66	1.35	1.64	1.53	2.70	3.03	4.37	1.86
Gravel, stones, turf and glass, %	-	-	-	-	-	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Foreign matter, %	-	-	-	-	-	2.05	2.05	0.16	0.16	0.15	0.15	0.31	0.82	0.19
Other grain & unthreshed ears, %	-	-	-	-	-	0.75	0.75	0.34	0.36	0.29	0.29	0.74	0.44	0.40
Heat damaged kernels, %	-	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, % Insect damaged kernels, %	·	-	-	-	-	0.00	0.00	0.04	0.03 0.48	0.04	0.01	0.04 0.94	0.03	0.03
				-					0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, % Sprouted kernels, %	·	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.09	0.00
Total damaged kernels, %	-	-	-	-	-	0.06	0.06	0.16	0.14	0.11	0.06	1.14	1.09	0.16
Combined deviations, %	-	-	-	-	-	9.66	9.66	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	-	-	-	-	-	0.04	0.04	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %		-	-	-	-	0.04	0.04	0.02	0.00	0.02	0.43	0.00	0.00	0.00
Ergot, %	-	-	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (Crotalaria spp., etc.)	-	-	-	-	-	0.00	0.00	0	0	0.00	0	0	1	0
Poisonous seeds (Argemone mexicana, etc.)		-	-	-	-	22	22	0	0	0	0	0	1	0
Live insects	-	-	-	-	-	No	No	No	No	No	No	No	No	No
Undesirable odour	-	-	-	-	-	No	No	No	No	No	No	No	No	No
								-						
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	-	-	-	-	4	4	23	14	11	10	11	1	70
Bühler Extraction, %	-	-	-	-	-	71.9	71.9	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR														
Colour, KJ	-	-	-	-	-	-3.0	-3.0	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)														
L*	-	-	-	-	-	93.22	93.22	93.65	93.68	93.68	93.90	93.77	93.38	93.71
a*	-	-	-	-	-	0.47	0.47	0.46	0.49	0.44	0.45	0.43	0.44	0.46
b*	-	-	-	-	-	10.89	10.89	9.91	10.21	10.17	10.48	10.05	10.15	10.12
Ash (db), %	-	-	-	-	-	0.52	0.52	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	-	-	-	-	10.0	10.0	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	-	-	-	-	24.8	24.8	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	-	-	-	-	-	8.7	8.7	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	-	-	-	-	100	100	95	93	94	96	93	96	94
100g BAKING TEST														
Baking water absorption, %	-	-	-	-	-	59.8	59.8	62.4	61.3	60.8	59.7	61.3	63.0	61.3
	- 1	-	- 1	-	-	941	941	1104	1029	987	957	1036	1167	1040
Loaf volume, cm ³									0	0	0	0	0	0
Loaf volume, cm ³ Evaluation	-	-	-	-	-	0	0	0	Ŭ					
Evaluation	-	-	-	-	-	0	0	0						
Evaluation FARINOGRAM		ı	-	-	-	ı	1			60.0	57.0	60.0	50.7	60.4
Evaluation FARINOGRAM Water absorption (14% mb), %	-	-	-	-	-	55.4	55.4	60.8	60.1	60.2	57.8	60.3	59.7	60.1
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min	-	ı	-	-	-	55.4 1.8	55.4 1.8	60.8 6.2	60.1 5.3	5.0	3.7	4.7	6.5	5.2
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		ı	- - -	- - -	- - -	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min	-	ı	- - - -	- - - -	- - - -	55.4 1.8	55.4 1.8	60.8 6.2	60.1 5.3	5.0	3.7 7.3 40	4.7	6.5	5.2
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı	- - - -	- - - -	-	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı	- - - -	- - - - -	-	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı	-	- - - - -	-	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı		Terraper	-	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı	-		-	55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	-	ı	-			55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0 35	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		ı				55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0 35	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3	6.5 9.3	5.2 8.3
Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		ı				55.4 1.8 5.0	55.4 1.8 5.0	60.8 6.2 9.0 35	60.1 5.3 8.0	5.0 7.8	3.7 7.3 40	4.7 8.3 36	6.5 9.3	5.2 8.3

104

2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin	1		Ukra	ine A	vera	ae			F	RSA (Crop	Aver	age	
Class and Grade bread wheat	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	-	-	-	-	-	4	4	23	14	11	10	11	1	70
			<u>,</u>				<u>,</u>							<u>I</u>
ALVEOGRAM														
Strength (S), cm ²	-	-	-	-	-	29.7	29.7	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	-	-	-	-	-	85	85	74	72	77	69	76	71	73
Distensibility (L), mm	-	-	-	-	-	61	61	155	133	116	126	127	120	135
P/L	-	-	-	-	-	1.41	1.41	0.49	0.57	0.68	0.56	0.61	0.59	0.57
										/			1	
					-	140 120	6		-				14	-
		1		1	1	1 4 2 2	100	4/2		1 67		67	1.400	
Strength, cm ²	-	-	-	-	-	102	102	113	93	85	89	97	126	99
Max. height, BU Extensibility, mm	-	-	-	· .	-	466	466 160	388 210	359 186	326 184	368 168	348 195	420 217	364 193
		1						111111111	- 					
MIXOGRAM														
Peak time, min	-	- 1	- 1	<u> </u>	- 1	5.4	5.4	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %	- -	-		-		59.8	59.8	62.4	61.1	60.9	59.9	61.4	63.0	61.4
		mall		ar		お。 注 				phe f	10. 110. 11. 11.	「「「「「「「」」」		
MYCOTOXINS														
Aflatoxin B ₁ (μg/kg)				0 [0]							ND			
Aflatoxin B ₂ (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G ₂ (µg/kg)				0 [0]							ND			
Fumonisin B ₁ (μg/kg)				0 [0]]						ND			
Fumonisin Β ₂ (μg/kg)				0 [0]				ND						
Fumonisin B ₃ (µg/kg)	0 [0]					ND								
Deoxynivalenol (µg/kg) [max. value]				<100 [<	100]						<100 [5	01]		
15-ADON (µg/kg)				0 [0]]						ND			
Ochratoxin A (µg/kg)				0 [0]							ND			
Zearalenone (µg/kg) [max. value]				0 [0]							ND			
HT-2 (μg/kg)											ND			
T-2 Toxin (µg/kg)				0 [0] 0 [0]							ND			
No. of samples				1							40			

2016/2017 IMPORTED WHEAT QUALITY - USA (1 Oct 2016 to 30 Sep 2017) 2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin USA Average RSA Crop Average														
Country of origin Class and Grade bread wheat	B1	B2	B3	1		1								A
		D2	БЗ	B4	UT	COW	Average					-		Average
No. of samples	-	-	-	4	2	-	6	130	91	33	28	48	7	337
WHEAT														
GRADING														
Protein (12% mb), %	-	-	-	10.4	11.3	-	10.7	13.0	11.5	11.0	11.0	11.4	13.6	12.0
Moisture, %	-	-	-	10.8	10.6	-	10.8	9.9	9.8	9.8	9.9	9.7	10.2	9.9
Falling number, sec	-	-	-	376	44.3	-	398	358	361	343	359	349	358	356
1000 Kernel mass (13% mb), g	-	-	-	32.2	29.1	-	31.2	37.7	39.6	40.5	37.8	38.6	35.6	38.6
Hlm (dirty), kg/hl	-	-	-	79.2	79.1	-	79.2	81.7	82.0	81.8	81.5	80.7	77.7	81.5
Screenings (<1.8 mm sieve), % Gravel, stones, turf and glass, %	-	-	-	3.44 0.02	4.00	-	3.62 0.01	1.35 0.01	1.64 0.01	1.53 0.01	2.70 0.00	3.03 0.01	4.37 0.39	1.86 0.02
Foreign matter, %	-	-	-	0.02	0.00	-	0.01	0.01	0.01	0.01	0.00	0.01	0.39	0.02
Other grain & unthreshed ears, %	-	-	-	0.17	0.72	-	0.51	0.34	0.36	0.13	0.10	0.74	0.02	0.10
Heat damaged kernels, %	<u> </u>	-	-	0.00	0.24	-	0.08	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Immature kernels, %	- 1	-	-	0.00	0.00	-	0.00	0.04	0.03	0.04	0.01	0.04	0.03	0.03
Insect damaged kernels, %	-	-	-	0.15	0.27	-	0.19	0.36	0.48	0.41	0.49	0.94	0.32	0.49
Heavily frost damaged kernels, %	-	-	-	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	-	-	0.16	0.00	-	0.11	0.16	0.14	0.11	0.06	0.16	1.09	0.16
Total damaged kernels, %	-	-	-	0.31	0.51	-	0.37	0.56	0.64	0.56	0.55	1.14	1.45	0.68
Combined deviations, %	-	-	-	4.32	5.40	-	4.68	2.40	2.82	2.55	3.70	5.21	7.21	3.14
Field fungi, %	-	-	-	0.33	0.16	-	0.27	0.32	0.35	0.32	0.43	0.41	0.57	0.36
Storage fungi, %	-	-	-	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	-	-	-	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Poisonous seeds (<i>Crotalaria spp., etc.</i>)	-	-	-	0	0	-	0	0	0	0	0	0	1	0
Poisonous seeds (<i>Argemone mexicana, etc.</i>) Live insects	-	-	-	∠ No	∠ No	-	No Z	0 No	0 No	No	No	0 No	No	No
Undesirable odour		<u>-</u>	<u> </u>	No	No	-	No	No	No	No	No	No	No	No
			I						110			NO		110
	B1	B2	B3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	- 1	-	-	4	2	-	6	23	14	11	10	11	1	70
Bühler Extraction, %	-	-	-	70.7	70.9	-	70.8	72.8	72.7	72.2	72.8	71.6	73.1	72.5
FLOUR		,												
Colour, KJ	-	-	-	-3.5	-3.3	-	-3.4	-3.7	-3.8	-3.6	-4.0	-3.8	-3.4	-3.8
Colour, Konica Minolta CM5 (dry)		r	r			r								00 74
L* a*	-	-	-	94.18 0.33	93.33 0.45	-	93.89 0.37	93.65 0.46	93.68 0.49	93.68 0.44	93.90 0.45	93.77 0.43	93.38	93.71 0.46
a b*	-	-	-	9.76	10.45	-	9.97	9.91	10.21	10.44		10.05	0.44 10.15	10.12
Ash (db), %			-	0.50	0.56	-	0.52	0.58	0.60	0.58	0.60	0.60	0.62	0.59
Protein (12% mb), %	-	-	-	8.8	9.9	-	9.2	12.1	11.1	10.7	9.9	11.2	12.6	11.2
Wet Gluten (14% mb), %	-	-	-	22.4	24.4	-	23.2	33.0	30.7	29.5	25.9	31.0	34.3	30.7
Dry Gluten (14% mb), %	- 1	-	-	7.6	8.6	-	8.0	11.5	10.5	10.0	8.8	10.6	12.0	10.5
Gluten Index	-	-	-	98	100	-	99	95	93	94	96	93	96	94
	Í													
100g BAKING TEST														
Baking water abcorntion 9/										000		61 2	62.0	61.3
Baking water absorption, %	-	-	-	56.6	56.7	-	56.6	62.4	61.3	60.8	59.7	61.3	63.0	
Loaf volume, cm ³	-	-	-	867	949	-	894	1104	1029	987	957	1036	1167	1040
Loaf volume, cm ³ Evaluation	-			867	949	-	894	1104	1029	987	957	1036	1167	1040
Loaf volume, cm ³ Evaluation FARINOGRAM	-	-	-	867 0	949 0	-	894 0	1104 0	1029 0	987 0	957 0	1036 0	1167 0	1040 0
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), %	-			867 0 51.1	949 0 53.9	-	894 0 52.0	1104 0 60.8	1029 0 60.1	987 0 60.2	957 0 57.8	1036 0 60.3	1167 0 59.7	1040 0 60.1
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min	-	-	-	867 0 51.1 1.6	949 0 53.9 2.1	-	894 0 52.0 1.7	1104 0 60.8 6.2	1029 0 60.1 5.3	987 0 60.2 5.0	957 0 57.8 3.7	1036 0 60.3 4.7	1167 0 59.7 6.5	1040 0 60.1 5.2
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), %	-	-	- - -	867 0 51.1	949 0 53.9	- - -	894 0 52.0	1104 0 60.8	1029 0 60.1	987 0 60.2	957 0 57.8	1036 0 60.3	1167 0 59.7	1040 0 60.1
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm	- - - -	-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3
Loaf volume, cm ³ Evaluation FARINOGRAM Water absorption (14% mb), % Development time, min Stability, mm		-	- - -	867 0 51.1 1.6 7.3	949 0 53.9 2.1 10.5	- - - - -	894 0 52.0 1.7 8.4	1104 0 60.8 6.2 9.0 35	1029 0 60.1 5.3 8.0	987 0 60.2 5.0 7.8	957 0 57.8 3.7 7.3 40	1036 0 60.3 4.7 8.3	1167 0 59.7 6.5 9.3	1040 0 60.1 5.2 8.3

2016/2017 Imported Wheat Quality Versus 2016/2017 RSA Wheat Quality

Country of origin	[US	A Ave	erade	<u>,</u>			F	RSA (Crop	Aver	ade	
Class and Grade bread wheat							B1	B2	B3	B4	UT	cow	Average	
No. of samples	-	-	-	4	2	-	6	23	14	11	10	11	1	70
		<u>I</u>	<u>.</u>	<u> </u>		<u>I</u>							<u> </u>	
ALVEOGRAM														
Strength (S), cm ²	-	-	-	20.0	28.5	-	22.8	42.4	34.9	34.1	31.3	36.2	37.8	37.0
Stability (P), mm	-	-	-	51	76	-	59	74	72	77	69	76	71	73
Distensibility (L), mm	-	-	-	81	68	-	76	155	133	116	126	127	120	135
P/L	-	-	-	0.69	1.13	-	0.84	0.49	0.57	0.68	0.56	0.61	0.59	0.57
			/							/			1	
EXTENSOGRAM		-		<u> </u>		18	-		-				114	-
Strength, cm ²	-	- 1	-	94	110	- 1	100	113	93	85	89	97	126	99
Max. height, BU				477	550		506	388	359	326	368	348	420	364
Extensibility, mm		- .		140	147		143	210	186	184	168	195	217	193
		7	-						<					
MIXOGRAM		-							-			-		
Peak time, min	-	- 1	-	5.2	5.6	- 1	5.3	2.6	2.5	2.6	2.8	2.5	2.9	2.6
Water absorption (14% mb), %				58.9	59.7		59.1	62.4	61.1	60.9	59.9	61.4	63.0	61.4
					*	G. E					1	- HARRING - HARRING		
MYCOTOXINS														
Aflatoxin B ₁ (µg/kg)				0 [0]							ND			
Aflatoxin B_2 (µg/kg)				0 [0]							ND			
Aflatoxin G ₁ (µg/kg)				0 [0]							ND			
Aflatoxin G_2 (µg/kg)				0 [0]							ND			
Fumonisin B_1 (µg/kg)				0 [0]							ND			
Fumonisin B_2 (µg/kg)						ND								
Fumonisin B ₃ (µg/kg)				0 [0]							ND			
Deoxynivalenol (µg/kg) [max. value]				330 [50	03]						<100 [5	01]		
15-ADON (μg/kg)				0 [<10	0]						ND			
Ochratoxin A (µg/kg)				0 [0]							ND			
Zearalenone (µg/kg) [max. value]				0 [0]							ND			
HT-2 (μg/kg)				0 [0]							ND			
T-2 Toxin (μg/kg)				0 [0]							ND			
No. of samples				3							40			

CERTIFICATE OF ACCREDITATION

In terms of section 2272) (b) of the Accreditation for Conformity Assessment, Calibration and Good Laboratory. Practice Act, 2006 (Act 19 of 2006), read with sections 23(1), (2) and (3) of the said Act, 1 hereby certify that

SOUTHERN AFRICAN GRAIN LABORATORY NPC Co. Reg. No.: 1997/018518/08

Facility Accreditation Number: T0116

is a South African National Accreditation System accredited Testing laboratory provided that all SANAS conditions and requirements are complied with

This certificate is valid as per the scope as stated in the accompanying schedule of accreditation Annexure "A", bearing the above accreditation number for

CHEMICAL AND PHYSICAL ANALYSIS

The facility is accredited in accordance with the recognised International Standard

ISO/IEC 17025:2005

The accreditation demonstrates technical competency for a defined scope and the operation of a laboratory quality management system

While this certificate remains valid, the Accredited Facility named above is authorised to use the relevant SANAS accreditation symbol to issue facility reports and/or certificates

Mr R Jostas Chief Executive Officer Effective Date: 01 November 2014 Certificate Expires 31 October 2019

ANNEXURE A

SCHEDULE OF ACCREDITATION

Facility Number: T0116

Permanent Address of Laboratory:

Southern African Grain Laboratory (NPC) Agri-Hub Office Park - Grain Building 477 Withente Road The Willows Pretoria 0040

Technical Signatories:

- Ms J Nortje (All Methods)
- Ms M Bothma (All Chemical Methods)
- Ms M Hammes (All Chemical Methods)
- Ms A de Jager (Nutrients & Contaminants)
- Ms W Louw (In-house Methods 001, 002, 003, 010 & 026)
- Ms D Moleke (Rheological Methods)
- Ms | Terblanche (Rheological Methods)
- Ms H Meyer (All Chemical, Nutrients and Contaminants & Grading Methods)
- Ms J Kruger (All Chemical Methods)
- Ms P Modiba (All Chemical Methods)
- Ms Motianthe (In-house Methods 001, 003 & 026)
- Mr B van Der Linde (Grading)
- Ms M Ramare (All Chemical Methods Excl. In-House Method 012 and SOP MC23)
- Ms Z Skhosana (In-house Method 026)
- Ms T de Beer (Rheological Methods)

Nominated Representative:

Ms PM Modiba

0041			
Tel:	(012) 807-4019	Issue No.:	27
Fax:	N/A.	Date of Issue:	22 February 2018
E-mail:	Paulina Modiba@sagl.co.za	Expiry Date:	31 October 2019
Mate	erial or Products Tested	Type of Tests / Properties Measured, Range of Measurement	Standard Specifications, Techniques / Equipment Used
CHEMIC	CAL		
Ground	i Barley	Moisture (Oven Method)	Analytical EBC Method 3.2, latest Edition (2 hour, 130 ⁰ C)
specific paddy),	and cereal products ally-wheat, rice, (hulled , barley, millet, rye, and grain, semolina and flour	Moisture (Oven Method)	ICC Std No.110/1, Latest Edition (90 min; 130°C) (2 hour; 130°C)
grains a food pr	emolina, bread, all kind of and cereal products and oducts (except those that ar coated)	Möisture (Oven Method)	AACCI 44-15.02, Latest Edition (1 hour; 130°C) (72 hour; 103°C)

Postal Address:

Postnet Suite # 391 Private Bag X1 The Willows

South African Wheat Crop Quality Report 2017/2018 Season

Facility Number: T0116

Maize Grits	Moisture (Oven Method)	Analytical EBC Method 6.2.2, latest edition (4 hours, 130 ⁰ C)
Animal feed, Plant tissue and Sunflower (Milled)	Moisture (Oven Method)	AgriLASA 2.1, Latest Edition (5 hours, 105 ⁰ C)
All flours, cereal grains, oilseeds and animal feeds	Nitrogen and protein (Combustion method - Dumas)	AACCI 46-30.01, Latest Edition
Cereal based food stuff	Dietary fibres (Total)	In-house method 012
Pood stuff and feeds	Carbohydrates (by difference) (calculation) Energy value (calculation) Total digestible nutritional value (calculation)	50P MC 23
Food Stuff and feeds	Determination of Ash	In-house method 011
Wheat Kernels	Moisture (Oven Method)	Government Gazette Wheat Regulation, Latest Edition (72 hour, 103°C)
Flours of grains e.g. barley, oats, triticale, maize, rye, sorghum and wheat; oilseeds like soybeans and sunflower, feeds and mixed feeds and foodstuffs	Crude fat (Ether extraction by Soxhiet)	In-house method 024
Meal and flour of wheat, rye, barley, other grains, starch containing and malted products	Fälling number	ICC Std 10771, Latest Edition
NUTRIENTS AND CONTAMINANTS		
Vitamin fortified food and feed products and fortification mixes grain based	Vitamin A as all trans Retinor (Saponification) (HPLC)	In-house method 001
	Thiamine Mononitrate (HPLC) Riboflavin (HPLC) Nicotinamide (HPLC) Pyridoxine Hydrochloride (HPLC)	In-house méthod 002
	Folic Acid (HPLC)	In-house method 003
Grain based food and feed products (fortified and unfortified) and fortification mixes	Total Sodium (Na) Total Iron (Fe) Total Zinc (Zn)	In-house method 010

Page 2 of 3

South African Wheat Crop Quality Report 2017/2018 Season

Facility Number, T0116

Multi-Mycotoxin: -A(latoxin G ₁ , B ₁ , G ₂ , B ₂ and total -Deoxynivalenol (DON), 15-ADON -Fumonisin B ₁ , B ₂ , B ₃ -Ochratoxin A -T2, HT-2 - Zearalenone	In-house method 026
Defective kernels (White maize/ yellow maize)	Government Gazette Maize Regulation, Latest Edition
Hectolitre mass (Kern222)	ISO 7971-3, Latest edition
Screenings	Government Gazette Wheat Grading Regulation, Latest Edition
Alveograph (Rheological properties)	ICC Std.121, Latest Edition
Farmograph (Rheological properties)	AACCI 54 02, Latest Edition (Rheological behaviour of flour Farinograph: Constant Flour Weight procedure)
Mixograph (Rheological properties)	Industry accepted method 020 (Based on AACCI 54-40.02, Latest Edition Mixograph Method)
	 -Aflatoxin G₁, B₁, G₂, B₂ and total -Deoxynivalenol (DON), 15-ADON -Fumonisin B₁, B₂, B₁ -Ochratoxin A T2, HT-2 - Zearalenone Defective kernels (White maize/ yellow maize) Hectolitre mass (Kern222) Screenings Alveograph (Rheological properties) Farmograph (Rheological properties)

Original Date of Accreditation: 01 November 1999

ISSUED BY THE SOUTH AFRICAN NATIONAL ACCREDITATION SYSTEM

oph

Accreditation Manager

Page 3 of 3

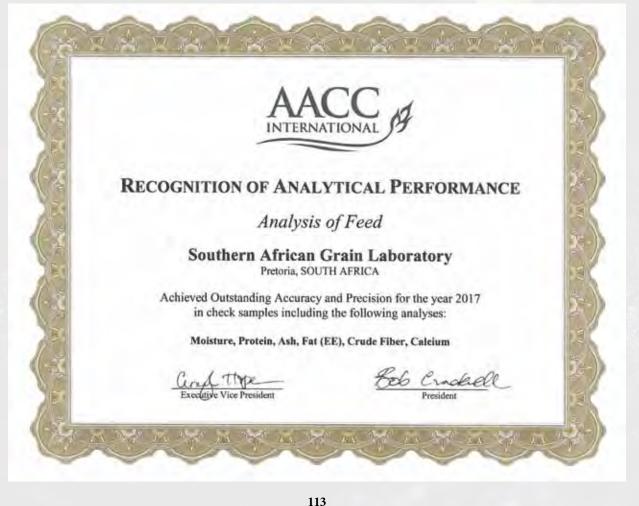
	BIPEA	
	CERTIFICATE OF PARTICIPATION	
This of		
This o	ertificate is awarded to:	
	SOUTHERN AFRICAN GRAIN LABORATORY NPC	
	THE WILLOWS - PRETORIA - South Africa	
for its ;	participation in BIPEA's Interlaboratory comparisons for the 2016-2017 annual series	5.
	Monday, September 11, 2017 - Pacia FRANCE	
BIPEA	member BIPEA	A Director
	CentRidate nº 18-17/11119	Card and a second

14. 11

RECOGNITION OF ANALYTICAL PERFORMANCE

Analysis of Hard Wheat Flour

Southern African Grain Laboratory Pretoria, SOUTH AFRICA


Achieved Outstanding Accuracy and Precision for the year 2017 in check samples including the following analyses:

Moisture, Protein, Ash, Falling Number

ice President

S. W. Altow

Beb Crackell President

Seasonal Climate Watch

August to December 2018

Date issued: Jul 24, 2018

I. Overview

The El Niño-Southern Oscillation (ENSO) is still in a neutral phase and is expected to rise towards an El Niño phase through the spring period. The likelihood of an El Niño event occurring is increasing as we move towards spring, when confidence in ENSO forecasts also starts increasing. It is still too early to determine the potential impact of the predicted El Niño event; however, the typical effects are drier and warmer conditions for the summer rainfall areas during summer.

The forecasting system indicates confident forecasts for above-normal rainfall over the western coastal regions during early spring (Aug-Sep-Oct). Rainfall totals for these regions are however substantially lower than the mid-winter (Jun-Jul-Aug) seasons. There is some concern for the southern coastal regions as there has been below-normal forecasts with confidence since last month for spring (Sep-Oct-Nov). This area usually still receives significant rainfall during spring and has also been affected by a drought the past few years.

Late spring (Oct-Nov-Dec) forecasts show confident forecasts for above-normal rainfall over the eastern coastal areas, which is also supported by the forecast for an increased number of rainfall days in the area.

Overall higher temperatures are still expected moving towards the spring period. There is a particularly confident forecast for above-normal temperatures over the northern parts of the country.

The South African Weather Service will continue to monitor and provide updates of any future assessments that may provide more clarity on the current expectations for the coming seasons.

South African Weather Service Prediction Systems Ocean-Atmosphere Global Climate Model

The South African Weather Service (SAWS) is currently recognised by the World Meteorological Organization (WMO) as the Global Producing Centre (GPC) for Long-Range Forecasts (LRF). This is owing to its local numerical modelling efforts which involve coupling of both the atmosphere and ocean components to form a fully-interactive coupled modelling system, named the SAWS Coupled Model (SCM), the first of its kind in both South Africa and the region. Below are the first season (Aug-Sep-Oct) predictions for rainfall (Figure 1) and average temperature (Figure 2).

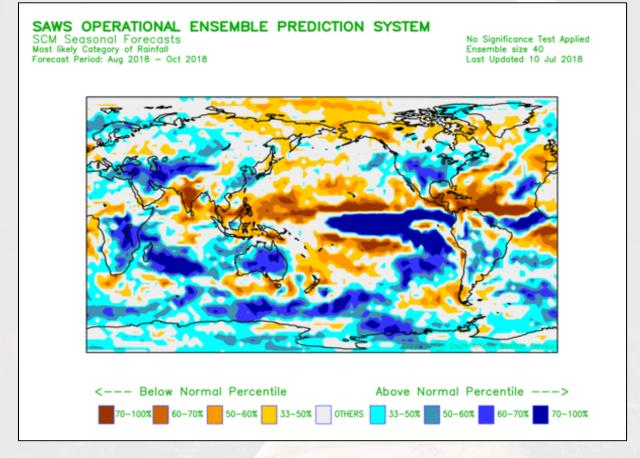


Figure 1: August-September-October global prediction for total rainfall probabilities.

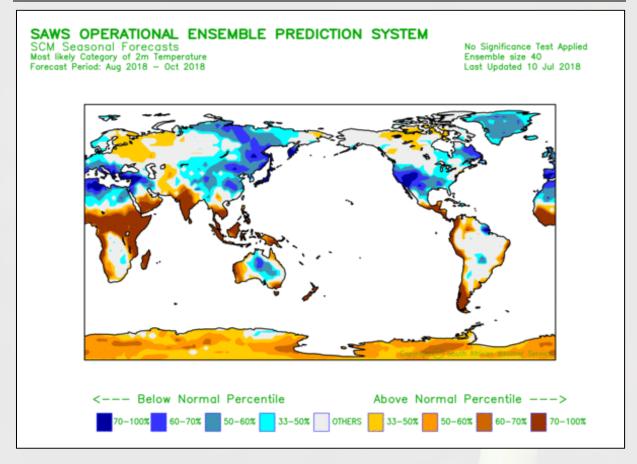


Figure 2: August-September-October global prediction for average temperature probabilities.

It is worth mentioning that the SCM levels of skill for the Niño 3.4 region (where ENSO information is sourced) are very much comparable to other state-of-the-art coupled models which are administered by other international centres. Therefore, the following Sea-Surface Temperature (SST) forecast (Figure 3) emanates from the SST Prediction System which is purely based on the SCM.

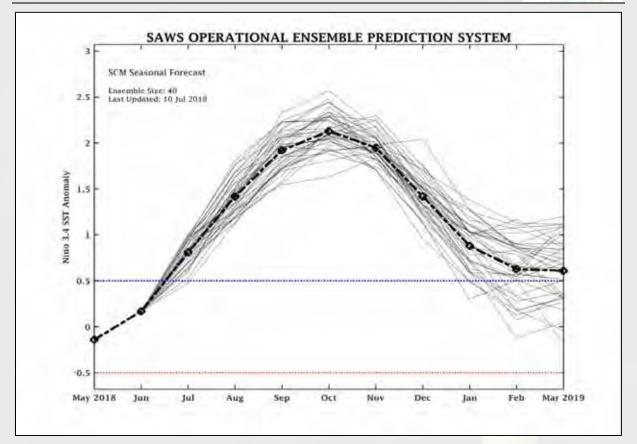
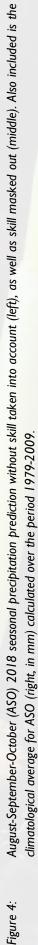


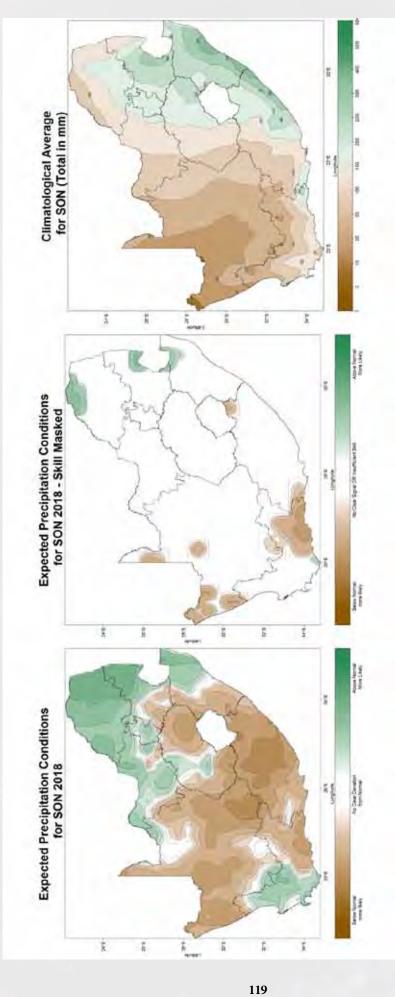
Figure 3: Niño3.4 SST anomaly forecasts produced by the SST forecast system administered by the SAWS. It comprises 40 ensemble members (marked in grey colour). The mean of the ensemble is marked in black.

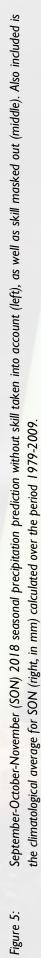
2.2. Multi-Model Statistical Downscaling System


2.2.1. Seasonal Totals and Averages

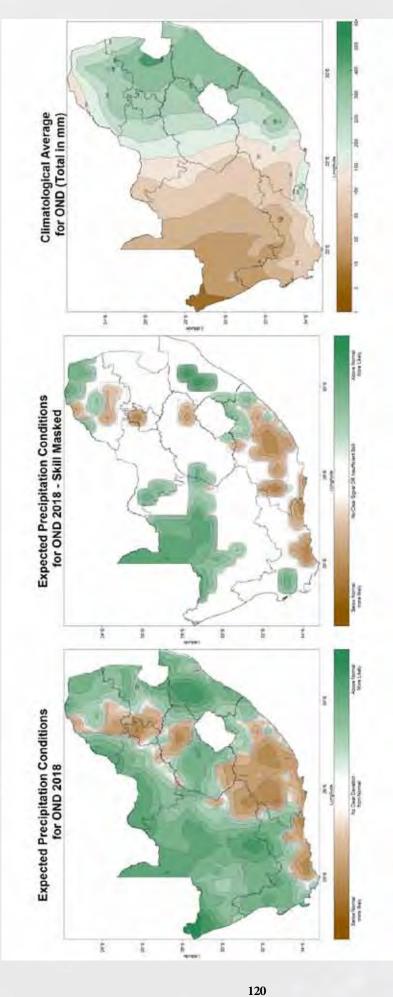
In an effort to improve the predictions made by the SCM, which struggles to produce reliable rainfall and temperature forecasts at a local scale, the Multi-Model System (MMS) has been implemented to statistically downscale various global forecasts, including the SCM and the Climate Forecasting System version 2 (CFSv2) administered by the National Oceanographic and Atmospheric Administration (NOAA).

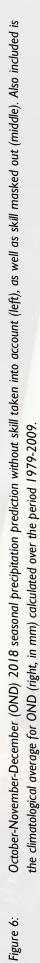
Below are the current three-season forecasts issued in July 2018. Three maps are shown for each season which include the raw MMS probabilistic prediction (left), the probabilistic prediction with skill masked out (middle) and the climatological average (right) for the specific season. The user is advised to consider the skill masked map (middle) as the official SAWS forecast, however, the two additional maps may be used as tools in such a case where skill for a specific area is deemed insufficient.



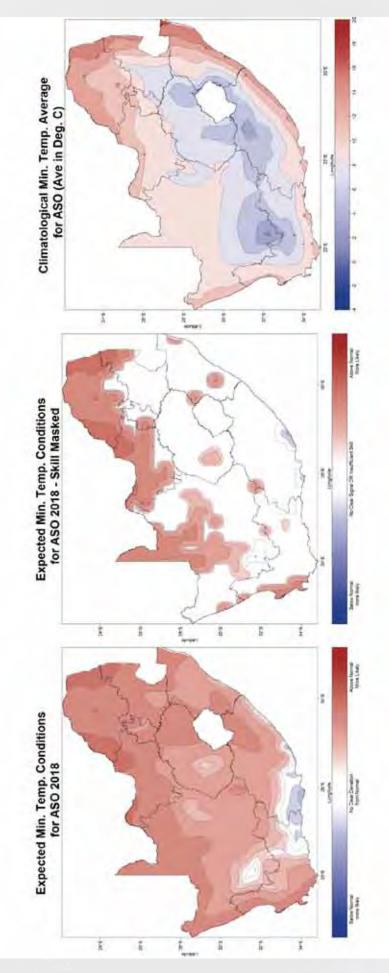


South African Wheat Crop Quality Report 2017/2018 Season

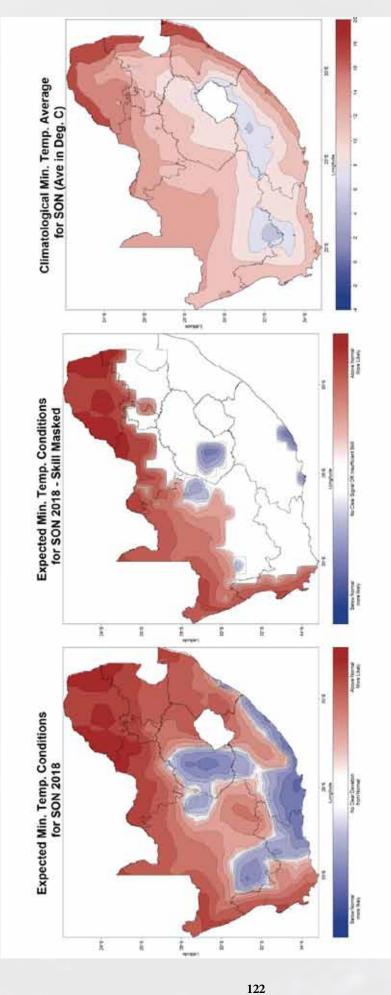




South African Wheat Crop Quality Report 2017/2018 Season



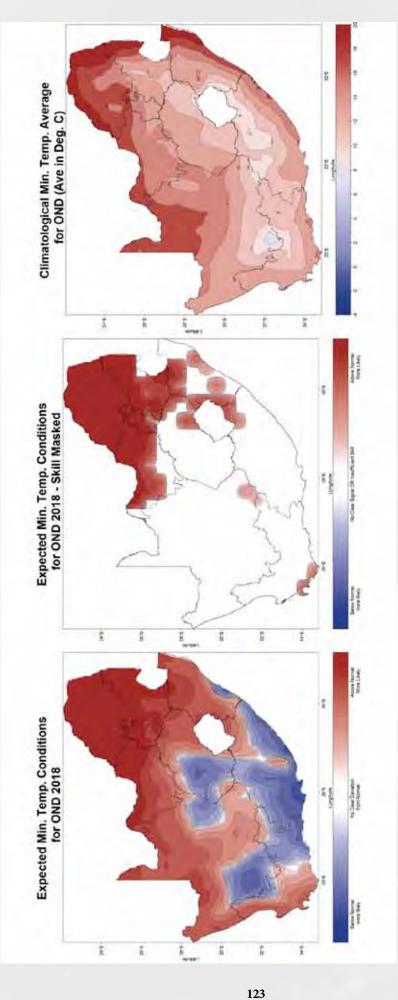
South African Wheat Crop Quality Report 2017/2018 Season



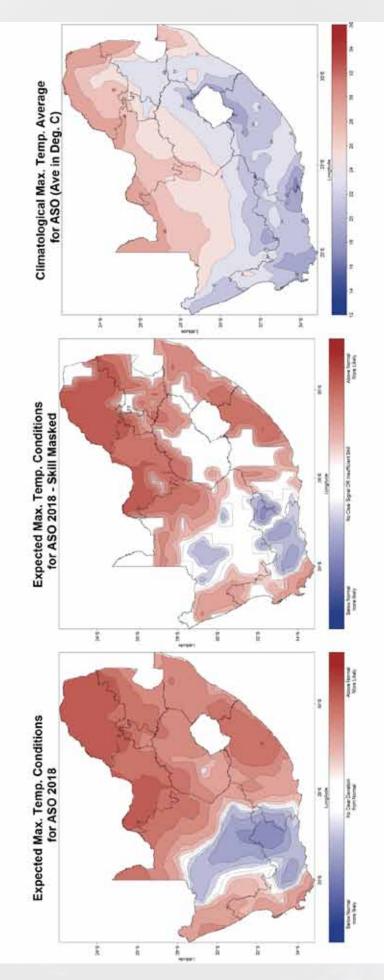


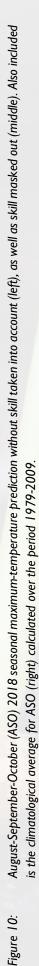
August-September-October (ASO) 2018 seasonal minimum-temperature prediction without skill taken into account (left), as well as skill masked out (middle). Also included is the climatological average for ASO (right) calculated over the period 1979-2009. Figure 7:

¹²¹ South African Wheat Crop Quality Report 2017/2018 Season

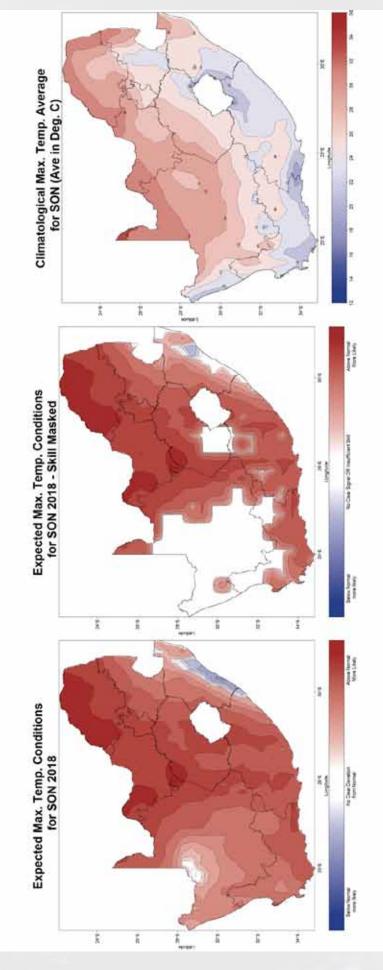


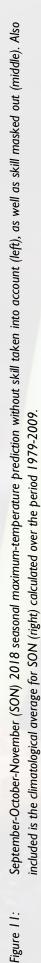
South African Wheat Crop Quality Report 2017/2018 Season

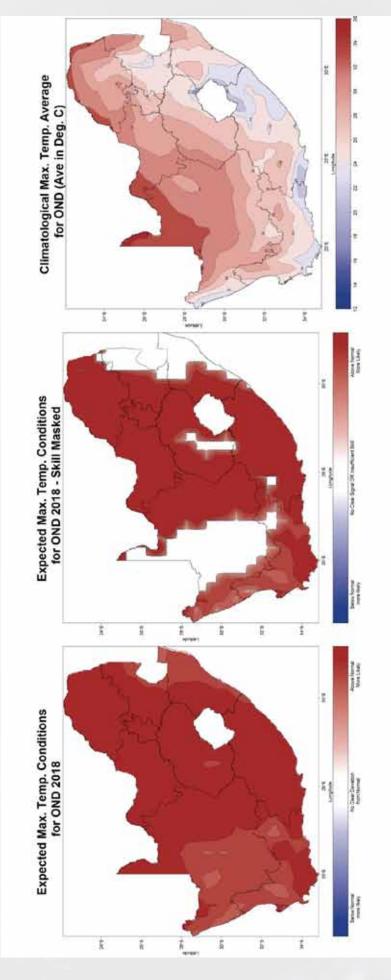


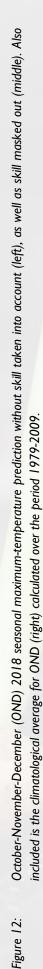


South African Wheat Crop Quality Report 2017/2018 Season

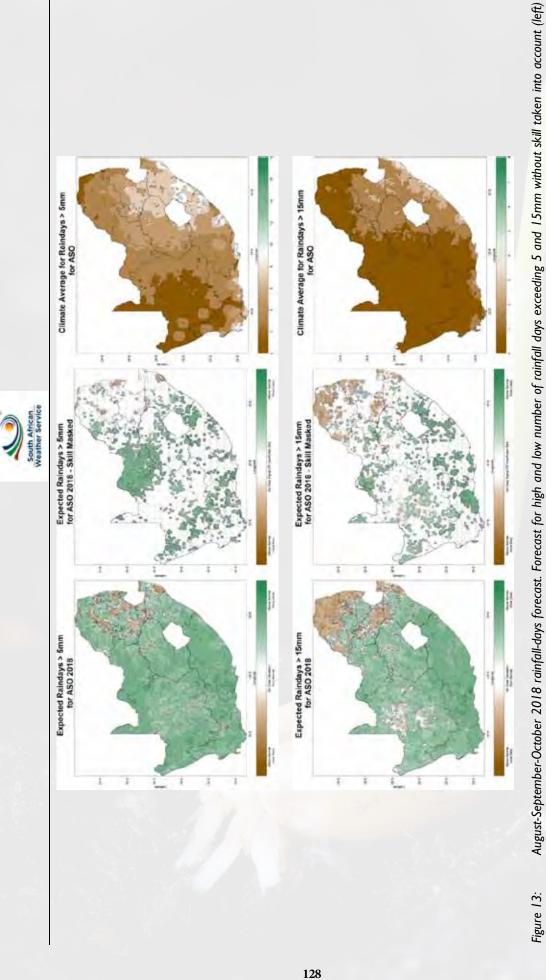




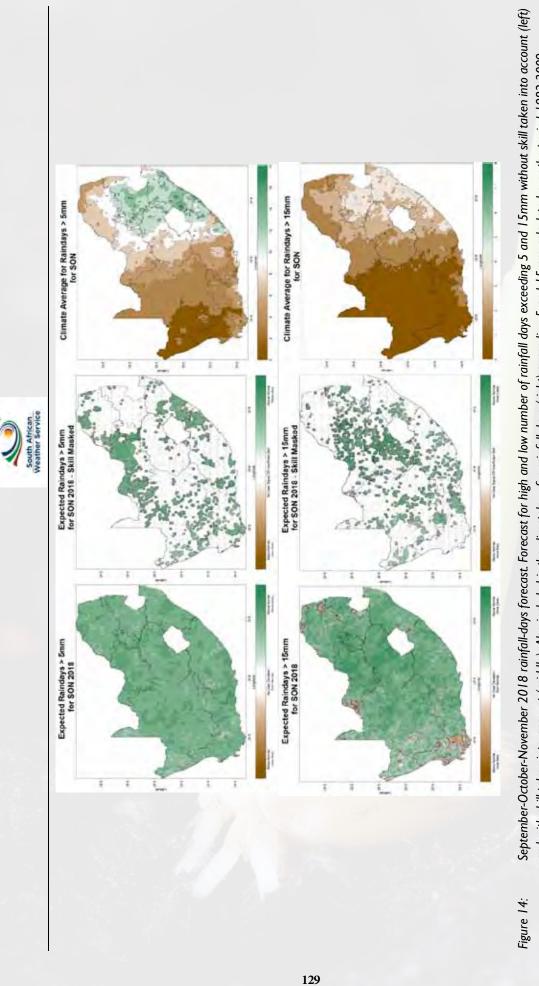

¹²⁴ South African Wheat Crop Quality Report 2017/2018 Season



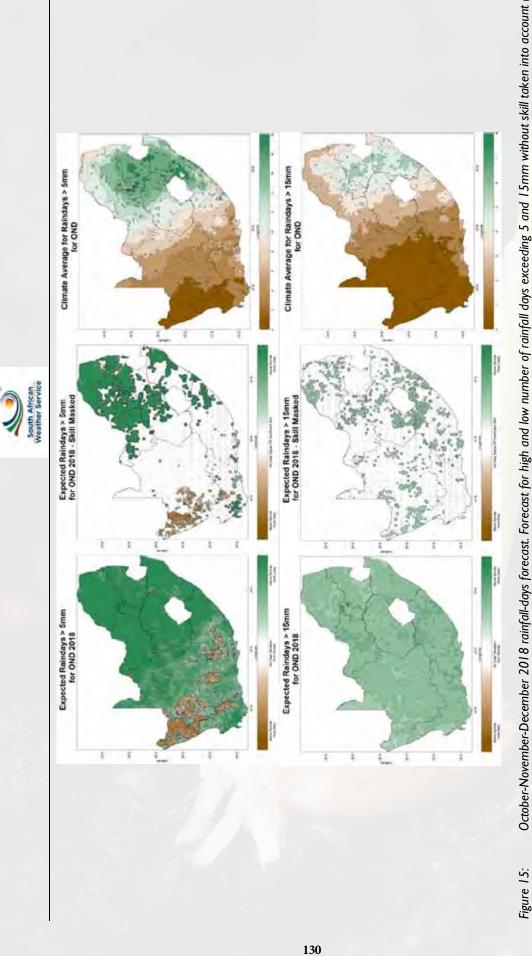
¹²⁶ South African Wheat Crop Quality Report 2017/2018 Season

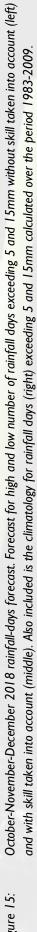


2.2.2. Rainfall Frequency Predictions


This product is a result of the SAWS operational multi-model system (MMS) where the 850-hPa geopotential heights hindcast outputs are first statistically recalibrated and downscaled to observed number of rainfall days exceeding desired thresholds (derived from high resolution 0.1 X 0.1 degree (ARCv2) African Rainfall Climatology version 2 rainfall dataset) within seasons of interest over southern Africa by using model output statistics (MOS). The 850-hPa geopotential heights are used here because they are found to be the best predictor of rainfall over southern Africa.

These forecasts can be used together with the traditional seasonal rainfall total forecasts in that it can indicate the frequency of rainfall days where seasonal rainfall forecast areas expect below- or above-normal conditions.

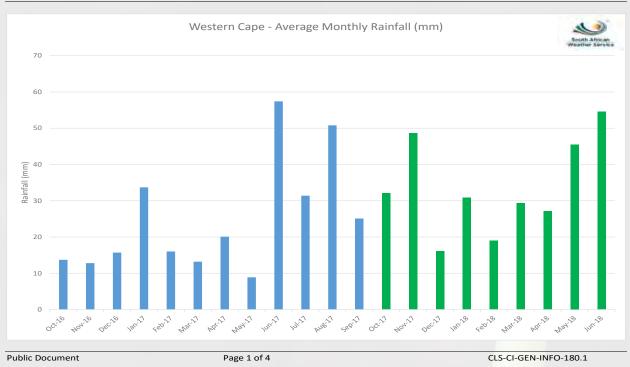




and with skill taken into account (middle). Also included is the climatology for rainfall days (right) exceeding 5 and 15mm calculated over the period 1983-2009.

and with skill taken into account (middle). Also included is the climatology for rainfall days (right) exceeding 5 and 15mm calculated over the period 1983-2009.

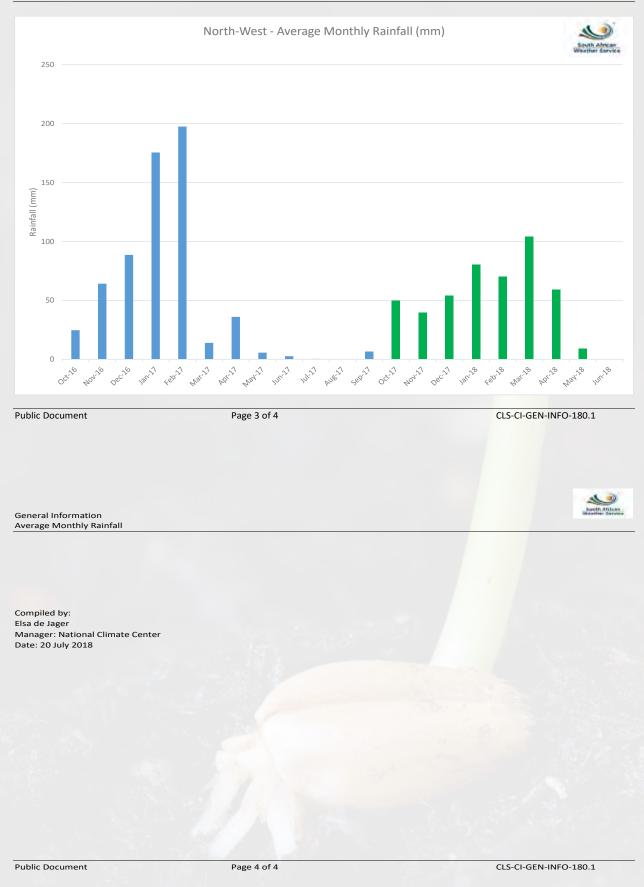
3. Contributing Institutions and Useful links


All the forecasts are a result of an objective multi-model prediction system developed at the South African Weather Service. This system consists of long-range forecasts produced by the following institutions:

http://www.weathersa.co.za/home/seasonal (Latest predictions including maps for the whole of SADC)

<u>https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/</u> (ENSO predictions from various centres)

General Information Average Monthly Rainfall



Austi African Weather Service

General Information Average Monthly Rainfall

STAATSKOERANT, 29 JANUARIE 2016

No. 39627 17

DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES

29 JANUARY 2016

NO. R. 64

AGRICULTURAL PRODUCT STANDARDS ACT, 1990 (ACT No.119 OF 1990)

REGULATIONS RELATING TO THE GRADING, PACKING AND MARKING OF BREAD WHEAT INTENDED FOR SALE IN THE REPUBLIC OF SOUTH AFRICA

The Minister of Agriculture, Forestry and Fisheries, acting under section 15 of the Agricultural Product Standards Act 119 of 1990, has

- (a) made the regulations in the Schedule;
- (b) determined that the said regulations shall come into operations on the date of publication; and
- (c) read together with section 3(1) of the said Act, repealed the Regulations published by Government Notice No. R1186 of December 2010.

SCHEDULE

Definitions

1. Unless the context otherwise indicates, any word or expression in these regulations to which a meaning has been assigned in the Act shall have that meaning, and--

"animal filth" means dead rodents, dead birds and dung;

"bag" means a bag manufactured from --

- (a) jute or phormium or a mixture of jute and phormium; or
- (b) polypropylene that complies with SANS specification CKS632 1246:2012;

"bulk container" means any vehicle or container in which bulk wheat is stored or transported;

18 No. 39627

"consignment" means --

- a quantity of wheat of the same class, which belongs to the same owner, delivered at any one time under cover of the same consignment note, delivery note or receipt note, or delivered by the same vehicle or bulk container, or loaded from the same bin of a grain elevator or from a ship's hold; or
- (b) in the case where a quantity referred to in paragraph (a), is subdivided into different grades, each such quantity of each of the different grades.

"container" means a bag or bulk container;

"damaged wheat" means wheat--

- (a) which have been damaged by insects;
- (b) which have been distinctly discoloured (orange-brown, dark brown or black) by external heat or as a result of heating caused by internal fermentation in wheat with an excessive moisture content, excluding wheat kernels in respect of which the discolouration is confined to the germ end;
- (c) which are immature and have a distinctly green colour; and
- (d) in which germination has proceeded to such an extent that the skin covering the embryo has been broken or the developing sprouts and/or rootlets are clearly visible.
- "ergot sclerotia" means the sclerotia of the fungus *Claviceps purpurea*; and "ergot" has a corresponding meaning;
- "falling number" means the time in seconds according to Hagberg-Perten as a measure of the degree of Alpha-Amylase activity in grain and flour;

"field fungi-infected wheat" means wheat of which the kernels are visibly infected with fungi, and that--

- (a) clearly have greyish brush-ends that are discoloured as a whole; or where field fungi growth is present from the brush-ends into the crease; and
- (b) have a dull, lifeless, chalky or pinkish and shrunken appearance as a result of *Fusarium* infection.
- "foreign matter" means all matter excluding wheat, other grain and unthreshed ears. Coal, dung, glass and metal shall not be present in the consignment concerned;

"heavily frost-damaged wheat" means --

- (a) wheat which have been damaged by severe frost during the milk to soft dough stage and which is characterised by the kernels being fairly plump, but covered entirely with small blisters extending into the crease, excluding --
 - (i) kernels in which blistering is confined to the back of the kernel; and
 - (ii) immature wrinkled kernels in which wrinkling has been caused by frost while the kernels were still immature; and
- (b) kernels which have a slightly flaked-off bran coat due to frost: Provided that evidence of frost damage is present and that the bran coat had not been rubbed off due to handling.

No. 39627 19

"hectolitre mass" means the mass in kilogram per hectolitre;

- "insect" means any live grain insect that is injurious to stored grain irrespective of the stage of development of that insect;
- "other grain" means the kernels or pieces of kernels of barley, oats, triticale, maize, rye and sorghum;
- "poisonous seeds" means the seeds or bits of seeds of plant species that may in terms of the Foodstuffs, Cosmetics and Disinfectants Act 54 of 1972 represent a hazard to human or animal health when consumed, including seeds of Argemone mexicana, Convolvulus spp., Crotalaria spp., Datura spp., Ipomoea purpurea, Lolium temulentum, Ricinus communis or Xanthium spp.;

"protein content" means the percentage protein in wheat on a 12% moisture basis;

"screenings" means all material that passes through the standard sieve;

"standard sieve" means a slotted sieve --

- (a) with a flat bottom of metal sheet of 1,0 mm thickness with apertures 12,7 mm long and 1,8 mm wide with rounded ends. The spacing between the slots in the same row must be 2, 43 mm wide and the spacing between the rows of slots must be 2,0 mm wide. The slots must be alternately orientated with a slot always opposite the solid inter segment of the next row of slots;
- (b) of which the upper surface of the sieve is smooth;
- (c) with a round frame of suitable material with an inner diameter of between 300 mm and 310 mm maximum and at least 50 mm high; and
- (d) that fits onto a tray with a solid bottom and must be at least 20 mm above the bottom of the tray.
- "stinking smut infection" means wheat that is infected with *Tilletia spp.* with the exception of wheat infected with *Tilletia indica* (karnal bunt). Wheat is considered to be infected by stinking smut infected if one or more of the following characteristics are present--
 - (a) an unmistakable stinking smut odour; or
 - (b) wheat kernels that are smeared with stinking smut; or
 - (c) more than four stinking smut balls (or pieces of balls equal to four stinking smut balls) per 100 g of wheat.

"storage fungi infected wheat" means wheat that are visibly infected with fungi, and that show --

- (a) blue, green, blackish or yellow fungal growth anywhere on the kernel; or
- (b) visible mould beneath the bran.

"the Act" means the Agricultural Product Standards Act 119 of 1990;

"unthreshed ears" means ears and bits of ears of wheat, barley, triticale and rye that still contain seeds that are completely covered with glumes; and

"wheat" means the kernels and pieces of kernels of the species Triticum aestivum.

20	No.	39627
----	-----	-------

Restrictions on sale of wheat

- 2. (1) No person shall sell a consignment of wheat in the Republic of South Africa --
 - (a) unless the wheat is sold according to the classes set out in regulation 3;
 - (b) unless the wheat complies with the standards for the classes set out in regulation 4;
 - (c) unless the wheat, where applicable, complies with the grades of wheat and the standards for grades set out in regulations 5 and 6 respectively;
 - (d) unless the wheat is packed in accordance with the packing requirements set out in regulation 7;
 - (e) unless the containers or sale documents, as the case may be, are marked in accordance with the marking requirements set out in regulation 8; and
 - (f) if such wheat contains a substance that renders it unfit for human consumption or for processing into or utilisation thereof as food or feed.

(2) The Executive Officer may grant written exemption, entirely or partially, to any person on such conditions as he or she may deem necessary, from the provisions of sub-regulation (1).

PART I

QUALITY STANDARDS

Classes of wheat

- 3. The classes of wheat are --
 - (a) Bread Wheat; and
 - (b) Other Wheat.

Standards for classes

(1)

4.

Notwithstanding the provisions of sub-regulations (2) and (3), a consignment of wheat shall - (a) be free from any toxin, chemical or any other substance that renders it unsuitable for human consumption or for processing into or utilisation thereof as food or feed and may not exceed the permissible deviations regarding aflatoxin in terms of the Foodstuffs, Cosmetics and Disinfectants Act 54 of 1972;

- (b) not contain more poisonous seeds or ergot sclerotia than permitted in terms of the Foodstuffs, Cosmetics and Disinfectants Act 54 of 1972;
- be free from organisms of phytosanitary importance as determined in terms of the Agricultural Pest Act 36 of 1983;
- (d) be free from mould infected, sour and rancid other grain and foreign matter;
- (e) be free from any undesired odour, taste or colour not typical of undamaged and sound wheat;
- (f) be free from animal filth;

- (g) be free from stones, glass, metal, coal or dung;
- (h) with the exception of Class Other Wheat, be free from grain insects;
- (i) with the exception of Class Other Wheat, be free from stinking smut infection; and
- (j) with the exception of Class Other Wheat, have a moisture content not exceeding 13 percent.
- (2) A consignment shall be classified as Bread Wheat if --
 - the wheat in the consignment consists of at least 95 percent (m/m) of one or more of the bread wheat seeds; and
 - (b) it complies with the standards for Grade 1, Grade 2, Grade 3, Grade 4 or Utility Grade set out in regulation 6.

(3) A consignment of wheat shall be classified as Class Other Wheat if it does not comply with the standards for Bread Wheat.

Grades of wheat

- 5. (1) The grades for Bread Wheat shall be as follows:
 - (a) Grade 1.
 - (b) Grade 2.
 - (c) Grade 3.
 - (d) Grade 4; and
 - (e) Utility grade.
 - (2) No grades are determined for Class Other Wheat.

Standards for grades of wheat

6. (1) Subject to the provisions of subregulations (2), (3) and (4), a consignment of wheat shall be graded as --

- Grade 1 if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 2 of the said table opposite the deviation concerned;
- (b) Grade 2 if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 3 of the said table opposite the deviation concerned;
- (c) Grade 3 if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 4 of the said table opposite the deviation concerned;
- (d) Grade 4 if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 5 of the said table opposite the deviation concerned; and

22 No. 39627		GOVERNMENT GAZETTE, 29 JANUARY 2016
	(e)	Utility Grade if the nature of deviation, specified in column 1 of Table 1 of the Annexure, in that consignment does not exceed the percentage specified in column 6 of the said table opposite the deviation concerned.
(2)	The m	inimum hectolitre masses for the different grades are as follows:
	(a)	Grade 1 - 77 kg.
	(b)	Grade 2 - 76 kg.
	(c)	Grade 3 - 74 kg.
	(d)	Grade 4 - 72 kg; and
	(e)	Utility Grade - 70 kg.
(3)	(a)	Grade 1, Grade 2 and Grade 3 shall have a minimum falling number value of not less than 250 seconds.
	(b)	Grade 4 shall have a minimum falling number value of not less than 200 seconds.
	(c)	Utility Grade shall have a minimum falling number value of not less than 150 seconds.
	(d)	Notwithstanding the provision of paragraph (a), wheat shall be deemed to comply with the requirements of the paragraph concerned if it deviates with not more than 30 seconds lower than the minimum prescribed for Grade 1, Grade 2 and Grade 3, as the case may be.
(4) be as follows:	The m	inimum protein content (on a 12 percent moisture basis) for the different grades shall
	(a)	Grade 1 - 12 percent.
	(b)	Grade 2 - 11 percent.
	(c)	Grade 3 - 10 percent.
	(d)	Grade 4 - 9 percent; and
	(e)	Utility Grade - 8 percent.
		PARTII
		PACKING AND MARKING REQUIREMENTS

Packing requirements

7. Wheat of different grades shall be packed in different containers, or stored separately.

Marking requirements

8. (1) Every container or the accompanying sale documents of a consignment of wheat shall be marked or endorsed by means of appropriate symbols specified in sub-regulation (2), with --

- (a) the class of the wheat; and
- (b) the grade.
- (2) The symbols referred to in sub-regulation (1) shall appear in the order of class and grade.
- (3) The symbols used to indicate the different --
 - (a) classes shall be --(i) B in the case of Bread Wheat; and
 - (ii) O in the case of Other Wheat.
 - (b) grades shall be --
 - (i) 1 in the case of Grade 1;
 - (ii) 2 in the case of Grade 2;
 - (iii) 3 in the case of Grade 3;
 - (iv) 4 in the case of Grade 4; and
 - (v) UT in the case of Utility Grade.

PART III

SAMPLING

Taking of sample

- 9. (1) A sample of a consignment of wheat shall --
 - (a) in the case of wheat delivered in bags and subject to regulation 10, be obtained by sampling at least ten percent of the bags, chosen from that consignment at random, with a bag probe: Provided that at least 25 bags in a consignment shall be sampled and where a consignment consists of less than 25 bags, all the bags in that consignment shall be sampled; and
 - (b) in the case of wheat delivered in bulk and subject to regulation 10, be obtained by sampling that consignment throughout the whole depth of the layer, in at least six different places, chosen at random in that bulk quantity, with a bulk sampling apparatus.
 - (2) The collective sample obtained in sub-regulation (1) (a) or (b) shall --
 - (a) have a total mass of at least 10 kg; and
 - (b) be thoroughly mixed by means of dividing before further examination.

(3) If it is suspected that the sample referred to in sub-regulation (1)(a) is not representative of that consignment, an additional five percent of the remaining bags, chosen from that consignment at random, shall be emptied into a suitable bulk container and sampled in the manner contemplated in sub-regulation (1) (b).

This gazette is also available free online at www.gpwonline.co.za

No. 39627 23

24 No. 39627

GOVERNMENT GAZETTE, 29 JANUARY 2016

(4) If it is suspected that the sample referred to in sub-regulation (1)(b) is not representative of that consignment, an additional representative sample shall be obtained by using an alternative sampling pattern, apparatus or method.

(5) A sample taken in terms of these regulations shall be deemed to be representative of the consignment from which it was taken.

Sampling if contents differ

10. (1) If, after an examination of the wheat taken from different bags in a consignment in terms of regulation 9(1) (a), it appears that the contents of those bags differ substantially --

- (a) the bags concerned shall be placed separately;
- (b) all the bags in the consignment concerned shall be sampled with a bag probe in order to do such separation; and
- (c) each group of bags with similar contents in that consignment shall for the purposes of these regulations be deemed to be a separate consignment.

(2) If, after the discharge of a consignment of wheat in bulk has commenced, it is suspected that the consignment could be of a class or grade other than that determined by means of the initial sampling, the discharge shall immediately be stopped and the part of the consignment remaining in the bulk container as well as the wheat already in the hopper shall be sampled anew with a bulk sampling apparatus or by catching at least 20 samples, by means of a suitable container, at regular intervals throughout the whole offloading period from the stream of wheat flowing in bulk.

Working sample

11. A working sample is obtained by dividing the representative sample of the consignment according to the latest revision of the ICC (International Association for Cereal Science and Technology) 101/1 method.

PART IV

DETERMINATION OF OTHER SUBSTANCES

Determination of undesirable odours and harmful substances

12. A consignment of wheat or a sample of a consignment of wheat shall be sensorially assessed or chemically analysed in order to determine whether--

- (a) it contains a substance that renders the wheat unfit for human consumption or for processing into or for utilisation as food or feed such as poisonous seeds, stones, glass, metal, coal or dung; and
- (b) it has a musty, sour, rancid or other undesirable odour: Provided that a working sample of unscreened wheat that is ground in a grain mill to a fine meal may be used for the determination concerned.

No. 39627 25

PART V

DETERMINATION OF CLASS, HECTOLITRE MASS, MOISTURE CONTENT, PROTEIN CONTENT AND FALLING NUMBER

Determination of class

- 13. The class of a consignment of wheat shall be determined as follows:
 - (a) Obtain a working sample of at least 500 g and screen the working sample in the manner prescribed in regulation 18.
 - (b) Take at least 100 g of the screened wheat and remove all other grain, un threshed ears and foreign matter by hand.
 - (c) Obtain a working sample of at least 25 g each after all other grain, unthreshed ears and foreign matter have been removed and separate the different cultivars.
 - (d) Determine the combined mass of all of the cultivars that belong to the same class and express the mass thus determined as a percentage of the mass of the working sample.
 - (e) Such percentage represents the percentage of all the cultivars that belong to the same class in the consignment.

Determination of the hectolitre mass

14. The hectolitre mass of a consignment of unscreened wheat may be determined by any suitable instrument: Provided that the instrument complies with and has been calibrated to the specifications detailed in ISO (International Organization for Standardization) 7971-3.

Determination of moisture content

15. The moisture content of a consignment wheat may be determined by any suitable method: Provided that the results thus obtained is in accordance with the maximum permissible deviation for a class 1 moisture meter as detailed in ISO (International Organization for Standardization) 7700/1 based on the results of the 72 hour, 103°C oven dried method [the latest revision of the AACCI (American Association of Cereal Chemists International) Method 44-15A].

Determination of protein content

16. The percentage of protein of a consignment of wheat may be determined according to any suitable method: Provided that --

- (a) the determination shall be conducted on a sample which had been sifted using a screen with the same apertures as the standard sieve and from which other grain, un threshed ears and foreign matter had been removed by hand; and
- (b) the results thus obtained are in accordance (± 0,3 percent) with the results obtained by the Dumas Combustion Analysis Method [the latest revision of the AACCI (American Association of Cereal Chemists International) Method 46-30].

Determination of falling number in wheat

17. (1) The falling number of a consignment of wheat may be determined according to any suitable method: Provided that --

26 N	lo. 39627		GOVERNMENT GAZETTE, 29 JANUARY 2016
		(a)	the determination shall be conducted on a sample which had been sifted using a screen with the same apertures as the standard sieve and from which other grain, unthreshed ears and foreign matter had been removed by hand; and
		(b)	the results thus obtained are in accordance (\pm 5 percent) with the results obtained by the latest revision of the ICC (International Association for Cereal Science and Technology) 107/1 method.
of the	(2) e ICC (Inte		alling number of a consignment of wheat is determined according to the latest revision al Association for Cereal Science and Technology) 107/1 method
		(a)	the sampling in the mentioned method shall be replaced with the manner prescribed in regulation 9; and
		(b)	only the altitude corrected value shall be used.
			PART VI
			DETERMINATION OF PERCENTAGE DEVIATIONS
Deter	rmination	of perc	centage screenings
18.	(1)	The pe	ercentage screenings in a consignment of wheat shall be determined as follows:
		(a)	Obtain a working sample of at least 500 g.
		(b)	Place the sample on the standard sieve and screen the sample by moving the sieve 50 strokes to and fro, alternately away from and towards the operator of the sieve, in the same direction as the long axes of the slots of the sieve. Move the sieve, which rests on a table or other suitable smooth surface, 250 mm to 460 mm away from and towards the operator with each stroke. The prescribed 50 strokes must be completed within 50 to 60 seconds: Provided that the screening process may also be performed with the standard sieve in some or other container or an automatic sieving apparatus.
		(c)	Determine the mass of the material that has passed through the sieve and express it as a percentage of the mass of the working sample.
		(d)	Such percentage represents the percentage screenings in the consignment.
Deter	rmination	of the	percentage heavily frost-damaged wheat
19. follow		ercentag	e heavily frost-damaged wheat in a consignment of wheat shall be determined as
	(a)	Obtain	a working sample of at least 25 g of a screened sample.
	(b)	Remov	e all heavily frost-damaged kernels by hand and determine the mass thereof.
	(c)	Expres	ss the mass thus determined as a percentage of the mass of the working sample.
	(d)	Such p concer	percentage represents the percentage heavily frost-damaged wheat in the consignment med.
Deter	rmination	of the	percentages other grain and unthreshed ears
20.	The pe	ercentag	e other grain and unthreshed ears in a consignment of wheat shall be determined as

_o. The percentage oth follows:

- (a) Obtain a working sample of at least 50 g from a screened sample.
- (b) Remove all other grain and unthreshed ears by hand and determine the mass thereof.
- (c) Express the mass thus determined as a percentage of the mass of the working sample.
- (d) Such percentage represents the percentage other grain and unthreshed ears in the consignment concerned.

Determination of the percentage foreign matter

- 21. The percentage foreign matter in a consignment of wheat is determined as follows:
 - (a) Obtain a working sample of at least 100 g from a screened sample.
 - (b) Remove all foreign matter by hand and determine the mass thereof.
 - (c) Express the mass thus determined as a percentage of the mass of the working sample.
 - (d) Such percentage represents the percentage foreign matter in the consignment concerned.

Determination of the percentage damaged wheat

- 22. The percentage damaged wheat in a consignment of wheat shall be determined as follows:
 - (a) Obtain a working sample of at least 25 g of a screened sample.
 - (b) Remove all damaged kernels by hand and determines the mass thereof.
 - (c) Express the mass thus determined as a percentage of the mass of the working sample.
 - (d) Such percentage represents the percentage damaged wheat in the consignment concerned.

Determination of the percentage heat-damaged wheat

- 23. The percentage heat-damaged wheat in a consignment of wheat shall be determined as follows:
 - (a) Obtain a working sample of at least 100 g from a screened sample.
 - (b) Remove all heat-damaged kernels by hand and determine the mass thereof. Kernels from an additional working sample may also be sensorially assessed (by smelling and tasting the kernels) to confirm suspicion of heat damage.
 - (c) Express the mass thus determined as a percentage of the mass of the working sample.
 - (d) Such percentage represents the percentage heat-damaged wheat in the consignment concerned.

Determination of percentage field fungi infected wheat

- 24. The percentage field fungi infected wheat in a consignment of wheat shall be determined as follows:
 - (a) Obtain a working sample of at least 25 g from a screened sample.
 - (b) Remove all field fungi infected kernels by hand and determine the mass thereof.
 - (c) Express the mass thus determined as a percentage of the mass of the working sample.

28 No. 39627

GOVERNMENT GAZETTE, 29 JANUARY 2016

(d) Such percentage represents the percentage of field fungi infected wheat in the consignment concerned.

Determination of percentage storage fungi infected wheat

25. The percentage storage fungi infected wheat in a consignment of wheat shall be determined as follows:

- (a) Obtain a working sample of at least 100 g from a screened sample.
- (b) Remove all storage fungi infected kernels by hand and determine the mass thereof.
- (c) Express the mass thus obtained as a percentage of the mass of the working sample.
- (d) Such percentage represents the percentage storage fungi infected wheat in the consignment concerned.

PART VII

Offence and penalties

26. Any person who contravenes or fails to comply with any provision of these regulations shall be guilty of an offence and upon conviction be liable to a fine of not exceeding R50 000 or to imprisonment for a period not exceeding two years, or to both that fine or imprisonment.

No. 39627 29

ANNEXURE

TABLE 1

STANDARDS FOR GRADES OF BREAD WHEAT

	Nature of deviation	Maximum percentage permissible deviation (m/m)									
		Grade 1	Grade 2	Grade 3	Grade 4	Utility Grade					
	1	3	4	5	6	7					
(a)	Heavily frost-damaged kernel	5	5	5	5	10					
(b)	Field fungi infected kernels	2	2	2	2	2					
(c)	Storage fungi infected kernels	0,5	0,5	0,5	0,5	0,5					
(d)	Screenings	3	3	3	4	10					
(e)	Other grain and unthreshed ears	1	1	1	1	4					
(f)	Gravel, stones and turf.	0,5	0,5	0,5	0,5	0,5					
(g)	Foreign matter including gravel, stones and turf: Provided that such deviations are individually within the limits specified in item (f).	1	1	1	1	3					
(h)	Heat-damaged kernels	0,5	0,5	0,5	0,5	0,5					
(i)	Damaged kernels, including heat- damaged kernels: Provided that such deviations are individually within the limit specified in item (h) and provided further that the minimum falling number value prescribed in regulation 6(3) for the grade concerned is at least complied with.	2	2	2	2	5					
(j)	Deviations in items (d), (e), (g) and (i) collectively: Provided that such deviations are individually within the limits of the said items.	5	5	5	5	10					

32 No. 10334

GOVERNMENT GAZETTE 7 OCTOBER 2016

DEPARTMENT OF AGRICULTURE, FORESTRY AND FISHERIES

NO. 1218

07 OCTOBER 2015

AGRICULTURAL PRODUCT STANDARDS ACT 1990

IACT No. 119 OF 1990)

AMENDMENT: REGULATIONS REGARDING THE GRADING, PACKING AND MARKING OF BREAD WHEAT INTENDED FOR SALE IN THE REPUBLIC OF SOUTH AFRICA

The Minister of Agriculture. Forestry and Fisheries, under section 15 of the Agricultural Product Standards Act, 1990 (Act No. 116 of 1990)-

(a) made the regulations in the Schedule and

(b) determined that the sale regulations shall come into operation on the date of publication incred!

SCHEDULE

In mis Schedule "the Regulations" means the regulations published by Government Gazette No. 39627 Notice No.R 64 of 29 January 2016.

1 Amendment of regulation 4 of the Regulations

Regulation 4 of the Regulations is literably amended by the substitution for paragraph (g) of subregulation [1] of the following paragraph

(a) be free from glass metal coal or dung

