

INDEX

	Page
Introduction	1
Production and protein distribution graphs	2
Quality 2008/2009 season	3
Wheat grades, cultivars and mycotoxins	4
Wheat class and grade per production area (pie charts)	5
Protein distribution graphs per production area (graphs)	5
Regional quality weighted averages	6
Protein, falling number, hectolitre mass and mixogram peak time over 10 seasons (graphs)	7
Regional quality	8 - 11
RSA wheat production and sampling procedure	12
Average yield per province graph	13
Dryland versus Irrigation area planted for 2008	13
Graphs showing correlation between protein content and 100-gram bake volume over last four seasons	14
Comparison of Flour Quality over last four seasons	15
Quality data plus rheological graphs per production region	16 - 45
Weighted average protein, falling number, hectolitre mass and mixogram peak time per region compared over the	
last three seasons	46
Grading table	47
Mycotoxin results	47
Summary of RSA wheat quality of 2006/2007 and 2008/2009	48 - 49
Summary of RSA wheat quality of 2007/2008 and 2008/2009	50 - 51
RSA chart plus seed figures	52
Methods	53 - 55
Imported wheat quality compared to RSA crop quality during the 2007/2008 production season	56 - 63

Compiled and issued by the:

Southern African Grain Laboratory 3rd Floor

3rd Floor CSIR building no.4 Meiring Naudé Street Pretoria SOUTH AFRICA

P.O.Box 1059 SILVERTON 0127

Tel: +27 (12) 349 2683 Fax: +27(12) 349 2686

E-mail: sagl@mweb.co.za Website: www.sagl.co.za

COMMERCIAL WHEAT QUALITY FOR THE 2008/2009 SEASON

Acknowledgements With gratitude to:

- The Winter Cereal Trust for its financial support in conducting this survey.
- The Grain Silo Industry and its members for their cooperation in providing the samples to make this survey possible.
- The National Chamber of Milling and its members for providing samples of wheat that were delivered directly to the mills.

Introduction

The final wheat production for the 2008/2009 season of 2 130 000 tons was almost 12 % higher than the previous season's 1 905 000 tons. This is 6.8 % higher than the 10-year average of 1 994 535 tons (1999/2000 to 2008/2009 seasons). A total area of 748 000 hectares was utilized for wheat production (Crop Estimates Committee)

The average hectolitre mass of 77.6 kg/hl was 0.5 kg/hl lower than the previous season as well as the ten year average. The whole wheat protein average of 12.0 % (12 % mb) was equal to the ten year average and better than the 11.0 % of the 2007/2008 season. 27 % of the samples received for this survey were graded as B1, compared to the 13 % of the previous season.

The climatic conditions and rainfall patterns of the various production regions were variable throughout the planting and harvesting seasons.

The quality of the flour was average to good. The dough quality was similar to that of the previous season. Quality differences can be seen between the three major production regions.

The straight-dough optimized 100-gram baking test, showed less variation in volume according to the protein content, than in the previous seasons. The average relationship between protein and bread volume was excellent.

The Southern African Grain Laboratory (SAGL), receives samples from all the production regions, and determines the quality of the annual wheat crop. The results (as averages per region) are made available on the website www.sagl. co.za from December each year. This hard copy report is available from June each year (with the option to download the report from the website).

The SAGL has ISO 17025 accreditation as a testing laboratory and is used as the reference laboratory for grain quality analyses in Southern Africa.

Samples, representing each production region, are fully graded and thousand kernel mass is done. Small samples are milled on the quadromat mill, after which a mixogram analysis is done.

Cultivar identification is done on these samples and sale figures of seed sold by the commercial grain silo owners are obtained.

Composite samples are made up per class and grade for each production region and milled on the Bühler mill. Rheological tests, namely a mixogram, farinogram, alveogram, extensogram and 100-gram baking test, are then performed.

Summaries comparing the quality of the local wheat for the 2006/2007 and 2008/2009 as well as the 2007/2008 and 2008/2009 seasons are provided.

Imported wheat (1 October 2007 - 30 September 2008) (Previous season)

The SAGL is also monitoring the quality of all wheat imported into South Africa. The same analyses which are done on the local crop are also done on the imported wheat. These results may only be made available at the end of each season.

Pages 56 to 63 of this report contain summaries of imported wheat from specific countries during the 2007/2008 season, compared to a summary of the local crop quality for the same season.

The quality of the Argentinian and German flour milled from wheat imported during 2007/2008, were not as good as that same season's local wheat flour, while the flour quality from Canadian and American wheat imported during 2007/2008 compared to that of 2007/2008 seasons's local wheat flour quality.

WHEAT PRODUCTION IN THE RSA OVER THE LAST 10 SEASONS

DIFFERENCES IN THE DISTRIBUTION OF PROTEIN CONTENT OVER THE LAST 3 SEASONS

Crop quality of the 2008/2009 season

The weighted protein average of 12.0 % (12 % mb) was the highest of the last three seasons (11.0 % and 11.5 % previously) and equalled the ten year average.

The protein distribution graph of all the wheat produced was slightly skew to the higher proteins (see page 2). The highest percentage of samples (25.6 %) had protein contents ranging from 11.0 - 11.9 %. The second highest persentage of 22.3 % was for protein contents 12.0 - 12.9 % and thirdly 16.5 % for 10.0 - 10.9 % protein content. A quarter of the total number of samples analysed had a protein content of 13.0 % and higher.

The weighted average hectolitre mass was 77.6 kg/hl (0.5 kg/hl lower than the 10 year average). A weighted average thousand kernel mass of 38.3 g was obtained, similar to the previous season.

The weighted average screenings (1.8 mm sieve) was 1.72 %.

The weighted average falling number was 378 seconds. Twenty one samples gave falling number values of less than 250 seconds. These samples were mainly from the Western Cape and the Free State provinces.

The weighted mixogram peak time on flour from the Quadromat mill averaged 2.9 minutes, equal to the ten year average. The weighted mixogram peak time of the flour from the Bühler mill averaged 2.7 minutes.

The weighted average Bühler extraction was 75.7 %, with a weighted average Kent Jones colour of -1.6 KJ.

The farinogram had a weighted average water absorption of 61.1 % (60.8 % the previous year) and a weighted average development time of 4.0 minutes (3.6 minutes last season). The weighted average alveogram strength was 38.0 cm² and the weighted average P/L value 0.90 (41.9 cm² and 0.94 the previous season). The weighted average extensogram strength was 90 cm² (97 cm² previous season).

The loaves baked using the 100 g straight-dough optimized bread making method, which refers to the relationship between the protein content and the bread volume, was evaluated and scored from "Excellent" to "Good". The baking test with Western Cape (winter rainfall area) wheat flour scored the lowest with an average ranking of "Very good". The summer rainfall and irrigation areas all scored an "Excellent" average ranking.

Quantity of imported wheat for the 2007/2008 season (previous season)

During the 2007/2008 season, 1 396 499 tons of wheat were imported for RSA. The biggest quantity was imported from Argentina, namely 684 160 tons, followed by USA with 406 562 tons, then Canada with 194 764 tons and Germany with 111 013 tons. (SAGIS web site).

For grading as well as dough and baking quality of the imported wheat, please see pages 56 to 63.

Wheat grades

Representative samples (480) of the crop were graded as follows: 27 % was graded B1, 25 % was graded B2, 21 % was graded B3, 10 % was graded B4 and UT plus COW made up 17 %. This year 14 % more samples graded B1 compared to the previous year.

Grade B1 wheat in the Free State province amounted to 66% (13% the previous season) and grade B1 in other summer rainfall and irrigation areas amounted to 18% (38% in the previous season). In the irrigation areas 24% (17% in the previous season) of the wheat graded as B1 and in the Western Cape Province 18% graded as B1 (8% in the previous season).

Cultivars

In the winter rainfall area, SST 027 dominated the market. The Western Cape produced 40 % of all wheat grown in South Africa during the 2008/2009 season. In the Western Cape, SST 027 (40 %) were followed by SST 88 (24 %) and SST 015 (22 %).

The cultivar that dominated the market in the Free State was Elands (30 %) (23% the previous year). Elands was followed by CRN 826 (23 %), SST 835 (18 %) and then PAN 3118 and PAN 3120 with 16 % and 14 % respectively.

The cultivar CRN 826 (45 %) dominated the market in the Vaal and the Orange River areas, followed by SST 835 with 19 % and Duzi with 13 %.

SST 835 (36 %) and CRN 826 (33 %) dominated the North West (mostly irrigation), followed by Duzi (9 %).

In Limpopo, Gauteng and Mpumalanga SST 835 (31 %) was the dominant cultivar followed by Duzi (21 %) and CRN 826 (18 %).

The above information was calculated from the cultivar identification done on all 480 crop samples.

Mycotoxins

Mycotoxins, as secondary metabolites of moulds or fungi, can cause toxic effects in humans and animals consuming contaminated foods or feeds. Thirty samples (representing different regions) were selected randomly for mycotoxin analyses. These samples were tested for aflatoxin, deoxynivalenol and ochratoxin.

The highest Aflatoxin content found was 3 ppb (μg/kg). In accordance with Act 54 of 1972, Foodstuffs, Cosmetics and Disinfectants, the allowable level of total aflatoxin is 10 ppb (μg/kg). In accordance with Act 36 of 1947, Fertilizers, Farm Feeds, Agricultural and Stock Remedies, the allowable level of total aflatoxin is 10 to 50 ppb (μg/kg).

The average deoxynivalenol (DON) content was 0.47 ppm (mg/kg) with the highest value being 3.0 ppm.

Ochratoxin was found in one sample at a level of 1.0 ppb (µg/kg).

Wheat class and grades per production area

Protein distribution graphs per production area

REGIONAL QUALITY WEIGHTED AVERAGES

	(V	er rai area Veste Cape	rn	rair	Summer rainfall area (Free State)			Irrigation areas			Other Summer rainfall and Irrigation areas			RSA average		
Individual samples n		166			140			115			59			480		
Regions		1 - 6		2	21 - 2	8	10-1	10-12, 15-20, 36			8, 30 - 35			All		
Hectolitre mass dirty, kg/hl		77.8		77.4			77.1			78.3			77.6			
1000 kernel mass (13 % mb), g		42.1		34.5				37.0			39.5			38.3		
Falling number, sec		372			346			419			391			378		
Screenings (1,8 mm), %		1.72			1.58			2.04			1.45			1.72		
Protein (12 % mb), % (ww)		10.87			13.40)		12.07			11.71			12.00		
Mixogram peak time, min (Quadromat)		2.7			3.3			2.8			3.0		2.9			
Individual samples per class and grade, n	18 38	29 27	47 7	66 6	35 8	23	24	37 28	18 5	18 2	20 4	13 2	126 49	121 67	101 16	
Composite samples per	B1	B2	ВЗ	B1	B2	В3	B1	B2	ВЗ	B1	B2	В3	B1	B2	ВЗ	
class and grade, n = 100	B4	UT	cow	B4	UT	cow	B4	UT	cow	B4	UT	cow	B4	UT	cow	
Composite samples, n	3 5	6 5	6 2	8	6	7	6	7 6	5 1	5 2	4 2	4	22 12	23 16	22 5	
Bühler extraction, %			75.5 74.9			75.0 73.2					76.9 75.8		76.0 75.2			
Flour colour, KJ			-1.9 -1.3			-1.5 -0.9					-1.8 -1.6			-1.7 -1.5		
Farinogram:	63.7	62.2	61.0	63.0	61.9	61.2	60.7	59.6	59.1	62.1	60.8	60.0	62.3	61.1	60.5	
Water absorption, %	60.2	61.6	62.5	61.3	61.3	58.9	60.3	60.3	60.3	62.1	58.9	58.9	60.9	60.7	60.6	
Farinogram:	4.3	3.5	2.4	5.5	4.6	4.8	4.8	4.4	3.6	4.9	3.8	3.4	5.0	4.1	3.6	
Development time, min	2.4	2.9	3.3	4.3	4.8	3.5	3.4	4.7	6.0	2.6	1.8	2.5	3.2	3.8	3.7	
Alveogram:	36.8	34.2	30.8	49.1	46.4	40.7	37.0	34.9	34.9	41.3	36.6	34.6	42.4	38.0	35.6	
Strength (S), cm ²	29.8	32.0	32.5	43.6	46.2	39.1	32.6	39.5	45.7	37.0	30.3	33.3	35.8	37.3	36.6	
Alveogram:	1.00	1.20	1.42	0.92	0.92	0.87	0.57	0.58	0.63	0.75	0.73	0.68	0.80	0.86	0.93	
P/L	1.34	1.32	1.61	0.82	0.92	0.50	0.57	0.51	0.48	1.30	1.28	0.36	1.10	0.94	0.91	
Extensogram:	77	67	67	110	114	95	103	89	84	98	88	83	101	90	83	
Strength, cm ²	66	67	59	112	107	106	69	109	118	88	65	104	85	90	89	
Mixogram peak time,	2.2	2.4	2.6	2.8	2.8	2.7	2.5	2.6	2.7	2.5	2.6	2.7	2.6	2.6	2.7	
min	2.7	2.5	2.4	2.9	2.9	3.2	2.3	2.6	2.8	2.7	3.0	3.2	2.7	2.7	2.8	
Relationship between protein and bread volume	G VG	EX VG	VG VG	VG EX	EX EX	VG EX	EX EX	EX EX	EX EX	EX EX	EX EX	EX EX	VG EX	EX EX	VG EX	

Ex = Excellent VG = Very Good G = Good

WEIGHTED AVERAGE QUALITY OVER 10 SEASONS

REGIONAL QUALITY

WINTER RAINFALL AREA (Western Cape)

Production regions 1 to 6 fall within the winter rainfall area (Western Cape Province). Region 1 is Namaqualand, regions 2 - 4 are the Swartland area and regions 5 and 6 the Rûens area. The Western Cape had the highest production of all the provinces this season, namely 840 000 tons (40 %) (CEC).

The hectolitre mass averaged 77.8 kg/hl (the previous season 77.7 kg/hl). The thousand kernel mass averaged 42.1 gram, which is higher than the previous season's 38.9 gram. The average falling number was 372 seconds. The average protein content of 10.87 % (12 % mb) was approximately 1.0 - 2.5 % lower than the protein contents of the other production areas.

Planting and harvesting conditions in the Swartland was favourable. The Rûens experienced a dry planting season with heavy rainfall during the harvesting period. As a result of this late rainfall, falling numbers below 250 seconds were observed.

The screenings of 1.72 % was higher than the previous season's 1.58 %. The Bühler extraction averaged 75.3 % (average of wheat grades B1 to B4, UT and COW) and the average colour of the flour was -1.9 KJ units. This colour indicates a very white flour that is preferred by millers and bakers.

The mixogram peak time (Quadromat mill) averaged 2.7 minutes. The average farinogram absorption was 61.6 %. The average strength of the alveogram was 32.4 cm² and the average strength of the extensogram was 67 cm². The alveogram strength in the Free State was 45.1 cm² and in the irrigation areas 36.8 cm².

The 100-gram baking test showed a very good relationship between protein content and bread volume.

SUMMER RAINFALL AREA (Free State)

Production regions 21 to 28, which fall within the Free State Province, had the second highest production, namely 560 000 tons (27 %) (CEC).

The average yield in the Free State of 2.0 tons/ha was lower than the 2.4 tons/ha of the previous season.

Planting conditions were excellent due to good rainfall, but dry conditions were experienced during spring and early summer. The first significant rainfall happened toward the beginning of the harvesting season.

The average hectolitre mass of 77.4 kg/hl was lower than the previous season's 78.7 kg/hl. The physical characteristic thousand kernel mass (34.5 g) was also lower than the previous season's 38.4 g. The average screenings was 1.58 %. The average protein increased from 11.71 % the previous season to 13.40 % (12 % mb) this season. Although the average falling number was 346 seconds, eight samples gave a falling number lower than 250 seconds.

The mixogram (Quadromat) peak time of 3.3 minutes was the same as the previous season, giving the Free State the longest average mixogram peak time of the different regional qualities.

The average Bühler extraction percentage in the Free State was 75.0 % (75.0 % previous season). The Kent Jones flour colour was -1.1 KJ units (-1.6 KJ units in previous season).

The average farinogram water absorption was 61.8 %, the same as the previous season and more or less the same as the other regions. The wheat from the Free State also usually tends to give a stronger dough than the other regions, with an alveogram strength of 45.1 cm² and an extensogram strength of 107 cm².

The 100-gram baking test showed that the relationship between protein content and bread volume ranged from very good to excellent between the different grades.

IRRIGATION AREAS

(Northern Cape, North West (plus other irrigation areas))

Production regions 10 - 12, 14 - 20 and 36 falls within the irrigation areas. These areas produced 501 375 tons of wheat this season (24 % of total production) with an average yield of 5.7 tons/hectare.

The climatic conditions and rainfall varied significantly over the different irrigation areas, affecting the hectolitre mass, falling number and yield values reported.

The average hectolitre mass was 77.1 kg/hl (77.8 kg/hl the previous season) and the thousand kernel mass was 37.0 g (38.8 g the previous season). The average falling number was 419 seconds. The average screenings was 2.04% and the protein averaged 12.07% (12% mb).

The average mixogram (Quadromat) peak time was 2.8 minutes which was more or less the same as the previous season.

The average Bühler extraction percentage was 76.5 (76.8 % during the previous season), with an average flour colour of -1.7 KJ units.

The average farinogram water absorption was 60.0% (61.3% during previous season), with an average farinogram development time of 4.4 minutes.

The average alveogram strength was 36.8 cm² and the average P/L was 0.57 (42.2 cm² and 0.66 respectively the previous season).

The average extensogram strength was 96 cm². The relationship between protein content and bread volume (with the 100-gram baking test) was shown to be excellent.

OTHER SUMMER RAINFALL AND IRRIGATION AREAS

(Mpumalanga, Limpopo, Gauteng and Eastern Cape)

Other summer rainfall regions, excluding the Free State, are mainly regions 8 (Eastern Cape), 30, 32, 33 (Mpumalanga), 34 (Gauteng) and 35 (Limpopo). They produced in total 188 400 tons during this season (9 % of the total production).

The average hectolitre mass was 78.3 kg/hl (77.8 kg/hl the previous season) and the average thousand kernel mass was 39.5 g (38.9 g the previous season).

The average falling number was 391 seconds, with the average percentage screenings 1.45 %. The average protein content was 11.71 % (12 % mb), which is similar to the previous year.

The average mixogram (Quadromat) peak time was 3.0 minutes (2.6 minutes the previous season).

The average Bühler extraction was 76.2 %, with an average colour of -1.5 KJ units (76.9 % and -1.6 KJ units the previous season). The farinogram average water absorption was 60.8 % (60.6 % the previous season) and had an average development time of 3.6 minutes.

The average alveogram strength was 36.6 cm², with an average P/L value of 0.83, and the average extensogram strength was 88 cm².

The 100-gram baking test showed an excellent relationship between protein content and bread volume.

South African Winter Cereal Production

Wheat is by far the biggest winter cereal crop planted in South Africa. Other winter crops are barley and canola. Summer field crops are better suited for the South African climatic conditions. Maize being the largest of the different crops, followed by wheat, then sunflower seed, soya-beans, sorghum, barley, groundnuts, dry beans and canola. The annual South African wheat crop is about 20-25 percent of the annual maize crop.

South Africa (made up of nine provinces) is divided into 36 crop production regions with wheat planted in about 32 of these regions. These production regions are described on pages 16 to 44 (on the top of the left page) giving the specific intake silo names for each region.

The three main wheat producing provinces are Western Cape (winter rainfall), Free State (summer rainfall) and the Northern Cape (irrigation). A fourth province worth mentioning is the North-West (mainly irrigation). See table on page 13 and map on page 52.

The Western Cape province produced 840 000 tons and the Free State province followed with 560 000 tons. (Seventh estimate by the Crop Estimates Committee, CEC). These two provinces were responsible for 67 % of the total wheat produced.

The yield in the main production areas ranged from 6.5 tons per hectare in the Northern Cape (irrigation area), 2.0 tons per hectare in the Free State and 2.4 tons per hectare for the Western Cape. Gauteng gave a yield of 6.2 tons per hectare, followed by North West with 5.6 tons per hectare and Limpopo and Mpumalanga both with 5.5 tons per hectare. KwaZulu-Natal and the Eastern Cape gave 4.9 and 4.0 tons per hectare respectively. See graph on page 13.

The local production is not sufficient for domestic requirements and South Africa has to import wheat to meet its domestic consumption of approximately 2.9 million tons every year.

South Africa has three major wheat-breeding programs. The South African breeders can only release a new cultivar or an introduction cultivar if it has better agronomical as well as better flour quality characteristics than the cultivars planted commercially in a specific area. Producers continuously try to improve the wheat yield and quality by selecting the best cultivars that can be grown commercially in a specific area. Grading standards are also set high to ensure adequate quality control.

Sampling procedure for the annual quality survey

During the harvest season, a sample of each delivery of wheat is taken according to the prescribed Wheat regulation. A representative sample needs to be drawn for grading purposes before the wheat is taken in at the silo. Of each of these grading samples, about 200 grams is thrown into a 100 kg bin according to grade and class at each silo. The 100 kg bin is divided and a 5 kg sample is send to the SAGL for the annual quality survey.

After receiving these representative wheat crop samples from all over the country, the SAGL select 480 samples representing the production of wheat for the specific regions/provinces.

South Africa is the only wheat producing country known-of that produces this kind of comprehensive quality information on their national wheat crop as well as making it available to the public.

Average yield per province (Irrigation versus summer and winter rainfall areas)

(Based on figures obtained from CEC)

Dry land versus Irrigation area planted for the 2008 production season

Drovinge		HECTARES		PERCE	NTAGE
Province	Dry land	Irrigation	Total	Dry land	Irrigation
Western Cape	347 200	2 800	350 000	99.2	0.8
Free State	240 000	40 000	280 000	85.7	14.3
Eastern Cape	3 575	1 925	5 500	65.0	35.0
Limpopo	3 000	17 000	20 000	15.0	85.0
Northern Cape	2 500	47 500	50 000	5.0	95.0
North West	2 475	22 525	25 000	9.9	90.1
Mpumalanga	500	7 500	8 000	6.2	93.8
KwaZulu-Natal	450	7 050	7 500	6.0	94.0
Gauteng	300	1 700	2 000	15.0	85.0
Total	600 000	148 000	748 000	80.2	19.8

(Figures obtained from CEC)

Straight - dough optimized 100g Baking test Comparison of protein vs loaf volume over the last four seasons

Comparison of Flour Quality over the last four seasons

Flour Quality 2008/2009 season								
Flour protein (12 % mb)	11.1	Farinogram water abs. (%)	61.1					
Bread volume 100g (cm³)	902	Farinogram dev. time (min.)	4.0					
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm²)	38.0					
Extensogram strength (cm²)	90	Alveogram P/L	0.90					

Flour Quality 2007/2008 season								
Flour protein (12 % mb)	10.4	Farinogram water abs. (%)	60.8					
Bread volume 100g (cm³)	827	Farinogram dev. time (min.)	3.6					
Mixogram (Bühler) peak time (min)	2.8	Alveogram strength (cm²)	41.9					
Extensogram strength (cm²)	97	Alveogram P/L	0.94					

Flour Quality 2006/2007 season								
Flour protein (12 % mb)	10.6	Farinogram water abs. (%)	61.4					
Bread volume 100g (cm³)	816	Farinogram dev. time (min.)	3.4					
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm²)	36.8					
Extensogram strength (cm²)	82	Alveogram P/L	0.93					

Flour Quality 2005/2006 season								
Flour protein (12 % mb)	11.5	Farinogram water abs. (%)	62.3					
Bread volume 100g (cm³)	906	Farinogram dev. time (min.)	5.0					
Mixogram (Bühler) peak time (min)	2.5	Alveogram strength (cm²)	40.7					
Extensogram strength (cm²)	108	Alveogram P/L	0.81					

WINTER RAINFALL WHEAT Western Cape Province

PRODUCTION REGION	(1) Namaq	ualand					(2) Swartla	nd n Regioi	n			
Intake silos	Bitterfor Graafwa						Bergrivie	•				
	Landpla	as					Koperfo					
	Vanrhyr Vredend						Vredenb	ourg				
WHEAT	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	11.2		9.4	13.0		1.52	10.3		8.0	11.5		0.84
Falling number, sec	435		387 40.9	478 44.6		37.56	390		332 36.0	450 44.4		27.60
1000 Kernel mass (13% mb), g Hectolitre mass (dirty), kg/hl	79.7		79.0	80.8		1.56 0.81	41.1 76.7		71.5	80.5		1.91
Screenings (<1.8mm), %	1.63		1.24	2.21		0.42	1.78		0.41	5.13		0.93
Total damaged kernels, % Number of samples	1.88		1.52	2.54 4		0.46	0.58		0.16	1.40 24)	0.32
							-1111					
CULTIVARS		SST	027	38	3.3			SST	027	44	1.8	
cultivars		SS	Г 88	25				SST	015		2.4	
with highest %			015	20			SST 88 20.7 SST 035 4.4					
occurrence			3408	8.					825		.8	
Number of samples				4						24		
MIXOGRAM (Quadromat)												
	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	ave 2.7		min 2.2 42	max 3.2 48		0.41 2.50	ave 3.0		min 2.8 41	max 3.6 53		0.25 2.57
	2.7		2.2 42	3.2		0.41	3.0		2.8	3.6		0.25
Peak time, min Tail height (6min), mm	2.7	B2	2.2 42	3.2 48	UT	0.41	3.0	B2	2.8	3.6 53		0.25
Peak time, min Tail height (6min), mm	2.7 45		42	3.2 48 4		2.50	3.0	B2 75.9	2.8	3.6 53 24		0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	2.7 45 B1	B2	2.2 42 B3	3.2 48 4	UT	0.41 2.50	3.0 46 B1		2.8 41 2	3.6 53 24 B4	UT	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	2.7 45 B1	B2 74.9	2.2 42 B3 75.3	3.2 48 4 75.6	UT 74.5	0.41 2.50	3.0 46 B1	75.9	2.8 41 2 B3 75.8	3.6 53 24 B4 76.1	UT 75.6	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.7 45 B1	B2 74.9	2.2 42 B3 75.3	3.2 48 4 8 75.6	UT 74.5	0.41 2.50	3.0 46 B1	75.9	2.8 41 2 B3 75.8	3.6 53 24 B4 76.1	UT 75.6	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.7 45 B1	B2 74.9 10.4 -2.1	2.2 42 75.3 8.2 -2.4	3.2 48 4 75.6 9.7 -2.3	UT 74.5 11.9 -2.0	0.41 2.50	3.0 46 B1	75.9 10.6 -2.1	2.8 41 2 83 75.8 10.0 -1.9	3.6 53 24 B4 76.1 9.0 -2.1	UT 75.6 8.9 -2.1	0.25 2.57 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	2.7 45 B1	B2 74.9 10.4 -2.1	2.2 42 83 75.3 8.2 -2.4	3.2 48 4 75.6 9.7 -2.3	UT 74.5 11.9 -2.0 65.9	0.41 2.50 COW	3.0 46 B1 -	75.9 10.6 -2.1 61.2	2.8 41 2 83 75.8 10.0 -1.9	3.6 53 24 B4 76.1 9.0 -2.1	8.9 -2.1	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.7 45 B1	B2 74.9 10.4 -2.1	2.2 42 75.3 8.2 -2.4	3.2 48 4 75.6 9.7 -2.3	UT 74.5 11.9 -2.0	0.41 2.50 COW	3.0 46 B1	75.9 10.6 -2.1	2.8 41 2 83 75.8 10.0 -1.9	3.6 53 24 B4 76.1 9.0 -2.1	8.9 -2.1 59.1 2.2	0.25 2.57 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.7 45 B1 -	10.4 -2.1 62.5 3.0	2.2 42 83 75.3 8.2 -2.4 61.4 1.5	3.2 48 4 75.6 9.7 -2.3	11.9 -2.0 65.9	0.41 2.50 COW -	3.0 46 B1 - -	75.9 10.6 -2.1 61.2 3.3	2.8 41 2 83 75.8 10.0 -1.9	3.6 53 24 84 76.1 9.0 -2.1 59.4 2.3	8.9 -2.1	0.25 2.57 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8	11.9 -2.0 65.9 5.0 9.8	0.41 2.50 COW	3.0 46 B1 - - -	75.9 10.6 -2.1 61.2 3.3 7.9	2.8 41 2 83 75.8 10.0 -1.9 60.2 2.7 7.0	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4	UT 75.6 8.9 -2.1 59.1 2.2 5.4	0.25 2.57 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39	11.9 -2.0 65.9 5.0 9.8 33	0.41 2.50 COW	3.0 46 B1 - - -	75.9 10.6 -2.1 61.2 3.3 7.9 32	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51	8.9 -2.1 59.1 2.2 5.4 56	0.25 2.57 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39	11.9 -2.0 65.9 5.0 9.8 33 86 310	0.41 2.50	3.0 46 B1	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51	8.9 -2.1 59.1 2.2 5.4 56	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39	11.9 -2.0 65.9 5.0 9.8 33	0.41 2.50	3.0 46 B1 - - - -	75.9 10.6 -2.1 61.2 3.3 7.9 32	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51	8.9 -2.1 59.1 2.2 5.4 56	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36 75 330 154	8.2 -2.4 61.4 1.5 4.9 54 61 295 139	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148	11.9 -2.0 65.9 5.0 9.8 33 86 310 195	0.41 2.50	3.0 46	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146	3.6 53 24 84 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133	59.1 2.2 5.4 56 64 320 132	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36 75 330 154	8.2 -2.4 61.4 1.5 4.9 54 61 295 139	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148	11.9 -2.0 65.9 5.0 9.8 33 86 310 195	0.41 2.50	3.0 46 B1	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51	8.9 -2.1 59.1 2.2 5.4 56	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36 75 330 154 36.5 101 74	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139 27.7 106 47	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148	11.9 -2.0 65.9 5.0 9.8 33 86 310 195 43.3 112	0.41 2.50	3.0 46 B1 - - - - - - -	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92 88	2.8 41 23 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 91 81	3.6 53 24 84 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133	59.1 2.2 5.4 56 64 320 132 28.9 84	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.7 45 B1	82 74.9 10.4 -2.1 62.5 3.0 6.9 36 75 330 154	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148	11.9 -2.0 65.9 5.0 9.8 33 86 310 195	0.41 2.50	3.0 46 B1 	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92	2.8 41 23 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 34.6 91	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133	59.1 2.2 5.4 56 64 320 132 28.9	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.7 45 B1	82 74.9 10.4 -2.1 62.5 3.0 6.9 36 75 330 154 36.5 101 74	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139 27.7 106 47 2.27	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148 35.3 95 75 1.27	11.9 -2.0 65.9 5.0 9.8 33 86 310 195 43.3 112 79 1.41	0.41 2.50	3.0 46 B1 - - - - - - -	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92 88 1.05	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 34.6 91 81 1.12	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133 28.7 86 66 66 1.31	59.1 2.2 5.4 56 64 320 132 28.9 84 69 1.22	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 45 B1	10.4 -2.1 62.5 3.0 6.9 36 75 330 154 36.5 101 74	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139 27.7 106 47	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148	11.9 -2.0 65.9 5.0 9.8 33 86 310 195 43.3 112	0.41 2.50	3.0 46 B1 - - - - - - -	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92 88	2.8 41 23 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 91 81	3.6 53 24 84 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133	59.1 2.2 5.4 56 64 320 132 28.9 84	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 45 B1	82 74.9 10.4 -2.1 62.5 3.0 6.9 36 75 330 154 36.5 101 74	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139 27.7 106 47 2.27	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148 35.3 95 75 1.27	11.9 -2.0 65.9 5.0 9.8 33 86 310 195 43.3 112 79 1.41	0.41 2.50	3.0 46	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92 88 1.05	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 34.6 91 81 1.12	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133 28.7 86 66 66 1.31	59.1 2.2 5.4 56 64 320 132 28.9 84 69 1.22	0.25 2.57
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 45 B1	82 74.9 10.4 -2.1 62.5 3.0 6.9 36 75 330 154 36.5 101 74	2.2 42 75.3 8.2 -2.4 61.4 1.5 4.9 54 61 295 139 27.7 106 47 2.27	3.2 48 4 75.6 9.7 -2.3 59.9 2.4 6.8 39 79 370 148 35.3 95 75 1.27	11.9 -2.0 65.9 5.0 9.8 33 86 310 195 43.3 112 79 1.41	0.41 2.50	3.0 46	75.9 10.6 -2.1 61.2 3.3 7.9 32 74 320 155 38.2 92 88 1.05	2.8 41 2 B3 75.8 10.0 -1.9 60.2 2.7 7.0 38 65 305 146 34.6 91 81 1.12	3.6 53 24 76.1 9.0 -2.1 59.4 2.3 5.4 51 63 315 133 28.7 86 66 66 1.31	59.1 2.2 5.4 56 64 320 132 28.9 84 69 1.22	0.25 2.57

MIXOGRAM

FARINOGRAM

EXTENSOGRAM

ALVEOGRAM

WINTER RAINFALL WHEAT Western Cape Province

	(3)						(4)						
PRODUCTION REGION	Swartla Central	nd ∣Region					Swartla Easterr	nd Region	1				
Intake silos	Eendek	uil					Ceres						
make chec	Klipheu						Gouda						
	Koringb	_					Halfmar						
	Malmes	-					Leliedar Portervi						
	Moravia	•					Riebeed						
	Piketbe												
	Pools												
	Ruststa	sie											
and the second s													
WHEAT	01/0		min	may		atdov	01/0		min	may		otdov	
Protein (12% mb), %	10.5		min 8.4	max 12.4		o.92	10.3		min 8.3	max 11.6		o.95	
Falling number, sec	395		329	587		47.89	377		339	423		27.55	
1000 Kernel mass (13% mb), g	42.8		38.5	50.3		2.29	39.7		35.7	43.9		2.97	
Hectolitre mass (dirty), kg/hl	77.7		72.7	81.6		1.59	79.4		76.5	82.0		1.52	
Screenings (<1.8mm), %	1.81		0.07	4.82		1.13	1.18		0.24	2.48		0.79	
Total damaged kernels, %	1.00)	0.32	3.96		0.76	0.62		0.18	1.52		0.37	
Number of samples			/	1					7	14			
CULTIVARS													
		SST	027	48	3.2			SST	027	41	.6		
cultivars			015		.1				T 88 T	21			
with highest %			Т 88	13.7							19.5		
occurrence			T 57		.1				015	14			
Number of samples		551	035	71	.9			PAN	3408	2.	.4		
rumber of campies										-			
MIXOGRAM (Quadromat)													
	ave		min	max		stdev	ave		min	max		stdev	
Peak time, min	2.7		2.0	4.8		0.39	2.7		2.0	3.3		0.33	
			2.0						2.0				
Peak time, min Tail height (6min), mm	2.7		2.0	4.8 51		0.39	2.7		2.0	3.3 47		0.33	
Peak time, min Tail height (6min), mm Number of samples	2.7 46 B1	B2	2.0 8 7	4.8 51 71 B4	UT	0.39 5.03	2.7 45 B1	B2	2.0 42 1	3.3 47 14 B4	UT	0.33	
Peak time, min Tail height (6min), mm	2.7		2.0	4.8 51		0.39 5.03	2.7 45		2.0	3.3 47		0.33	
Peak time, min Tail height (6min), mm Number of samples	2.7 46 B1	B2	2.0 8 7	4.8 51 71 B4	UT	0.39 5.03	2.7 45 B1	B2	2.0 42 1	3.3 47 14 B4	UT	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	2.7 46 B1	B2	2.0 8 7	4.8 51 71 B4	UT	0.39 5.03	2.7 45 B1	B2	2.0 42 1	3.3 47 14 B4	UT	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.7 46 B1 75.5	B2 75.7	2.0 8 7 B3 75.6	4.8 51 71 B4 75.3	UT 75.1	0.39 5.03 COW 74.2	2.7 45 B1	B2 74.7	2.0 42 1 83 75.1	3.3 47 14 B4 75.1	UT	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	2.7 46 B1 75.5	B2 75.7	2.0 8 7 8 75.6 9.8	4.8 51 71 B4 75.3 8.6	UT 75.1	0.39 5.03 COW 74.2	2.7 45 B1	B2 74.7	2.0 42 1 83 75.1 9.6	3.3 47 14 B4 75.1 8.7	UT -	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.7 46 B1 75.5 11.3	B2 75.7 10.5 -2.1	2.0 8 7 83 75.6 9.8 -2.1	4.8 51 71 84 75.3 8.6 -2.5	9.2 -2.2	0.39 5.03 COW 74.2 8.8 -1.9	2.7 45 B1 -	B2 74.7 10.6 -2.1	2.0 42 1 83 75.1 9.6 -2.4	3.3 47 84 75.1 8.7 -2.5	- -	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	2.7 46 B1 75.5 11.3 -2.1	B2 75.7 10.5 -2.1 64.6	2.0 8 7 8 75.6 9.8 -2.1	4.8 51 71 84 75.3 8.6 -2.5 60.1	9.2 -2.2	0.39 5.03 COW 74.2 8.8 -1.9	2.7 45 B1 -	B2 74.7 10.6 -2.1 61.0	2.0 42 1 83 75.1 9.6 -2.4	3.3 47 84 75.1 8.7 -2.5	- -	0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.7 46 B1 75.5 11.3	B2 75.7 10.5 -2.1	2.0 8 7 83 75.6 9.8 -2.1	4.8 51 71 84 75.3 8.6 -2.5	9.2 -2.2	0.39 5.03 COW 74.2 8.8 -1.9	2.7 45 B1 -	B2 74.7 10.6 -2.1	2.0 42 1 83 75.1 9.6 -2.4	3.3 47 84 75.1 8.7 -2.5	- -	0.33	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.7 46 B1 75.5 11.3 -2.1	10.5 -2.1 64.6 4.3	2.0 8 7 75.6 9.8 -2.1 62.3 2.4	4.8 51 71 84 75.3 8.6 -2.5	9.2 -2.2 61.0	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9	2.7 45 B1 -	10.6 -2.1 61.0 3.7	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0	3.3 47 84 75.1 8.7 -2.5 60.8		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1	10.5 -2.1 64.6 4.3 7.3	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6	9.2 -2.2 61.0 1.9 5.4	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35	10.5 -2.1 64.6 4.3 7.3 42	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46	9.2 -2.2 61.0 1.9 5.4 49	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35	82 75.7 10.5 -2.1 64.6 4.3 7.3 42	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46	9.2 -2.2 61.0 1.9 5.4 49	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46	9.2 -2.2 61.0 1.9 5.4 49	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35	82 75.7 10.5 -2.1 64.6 4.3 7.3 42	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46	9.2 -2.2 61.0 1.9 5.4 49	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46	9.2 -2.2 61.0 1.9 5.4 49	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170	64.6 4.3 7.3 42 67 290 157	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138	9.2 -2.2 61.0 1.9 5.4 49 75 355 141	0.39 5.03 COW 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133		0.33 1.56 COW -	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290 157	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138	9.2 -2.2 61.0 1.9 5.4 49 75 355 141	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82	3.3 47 14 84 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290 157 36.1 108 64	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99 63	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59	9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165 82 91	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84	3.3 47 14 84 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290 157	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138	9.2 -2.2 61.0 1.9 5.4 49 75 355 141	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82	3.3 47 14 84 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290 157 36.1 108 64	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99 63	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59	9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165 82 91	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84	3.3 47 14 84 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96	82 75.7 10.5 -2.1 64.6 4.3 7.3 42 67 290 157 36.1 108 64	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99 63	4.8 51 71 84 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59	9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165 82 91	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84	3.3 47 14 84 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96 94 1.02	64.6 4.3 7.3 42 67 290 157 36.1 108 64 1.68	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99 63 1.57	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59 1.60	9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63 1.54	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48 2.27	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37 77 315 165 35.5 82 91 0.90	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84 0.98	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57 1.65		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96 94 1.02	64.6 4.3 7.3 42 67 290 157 36.1 108 64 1.68	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 32.0 99 63 1.57	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59 1.60	75.1 9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63 1.54	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48 2.27	2.7 45 B1	82 74.7 10.6 -2.1 61.0 3.7 7.6 37 77 315 165 82 91 0.90	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84 0.98	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57 1.65		0.33 1.56 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 46 B1 75.5 11.3 -2.1 63.2 4.2 8.1 35 78 315 170 40.7 96 94 1.02	64.6 4.3 7.3 42 67 290 157 36.1 108 64 1.68	2.0 8 7 83 75.6 9.8 -2.1 62.3 2.4 6.5 38 72 325 150 99 63 1.57	4.8 51 71 B4 75.3 8.6 -2.5 60.1 1.8 5.6 46 73 360 138 28.9 94 59 1.60	9.2 -2.2 61.0 1.9 5.4 49 75 355 141 32.1 98 63 1.54	0.39 5.03 5.03 74.2 8.8 -1.9 62.4 1.9 4.7 53 51 285 125 29.1 109 48 2.27	2.7 45 B1	10.6 -2.1 61.0 3.7 7.6 37 77 315 165 35.5 82 91 0.90	2.0 42 1 83 75.1 9.6 -2.4 60.0 2.0 6.2 38 67 310 149 33.0 82 84 0.98	3.3 47 14 B4 75.1 8.7 -2.5 60.8 1.7 5.2 52 59 315 133 29.2 95 57 1.65		0.33 1.56 COW	

MIXOGRAM

3

FARINOGRAM

3

EXTENSOGRAM

3

ALVEOGRAM

WINTER RAINFALL WHEAT Western Cape Province

PRODUCTION REGION	(5) Rûens Wester	n Regior	1				(6) Rûens Eastern Region							
Intake silos	Bredaso Caledor Klipdale Krige Napier	1					_	erg melksrivi	er					
	Protem Rietpoe						Kleinbei Protem							
	Villiersd	orp					Riversd Swellen							
WHEAT														
	ave		min	max		stdev	ave		min	max		stdev		
Protein (12% mb), % Falling number, sec	11.7 304		9.8	13.3		0.99 36.85	11.8 339		9.7	13.7		1.06		
1000 Kernel mass (13% mb), g	42.6		39.0	45.6		1.60	41.9		37.6	48.6		2.52		
Hectolitre mass (dirty), kg/hl	77.6		74.7	79.2		1.16	78.0		74.6	81.0		1.73		
Screenings (<1.8mm), %	1.58		0.36	4.42		1.07	1.81		0.36	3.34		0.84		
Total damaged kernels, % Number of samples	1.00		0.18	1.66 9		0.48	1.32		0.00	8.16		1.95		
Number of Sumpres										-				
CULTIVARS		0.07	- 00	0.0				0.07	.007	0.4				
cultivars		SST		30					027 Γ88		.6			
with highest %			015	30.3 18.5					015	25				
occurrence			Г 57	12	2.0		SST 035 4.1							
		SST	035	5.	.3		SST 57 3.2							
Number of samples			1	9					3	4				
MIXOGRAM (Quadromat)														
Peak time, min	2.4		min 2.2	max 2.9		0.20	ave 2.5		min 1.9	max 3.3		o.33		
Tail height (6min), mm	46		41	51		3.09	50		45	55		2.69		
			41											
Number of samples				9					3	4				
			1	9	UT		P4	. Bo			U.T.	0014		
Number of samples	B1 75.3	B2 75.7			UT 74.2	COW	B1 75.8	B2 75.3	3 B3 74.8	B4	UT 75.0	COW 75.6		
Number of samples BÜHLER EXTRACTION, %	B1		1 B3	9 B4		cow			В3	B4		-		
Number of samples BÜHLER EXTRACTION, % FLOUR	B1 75.3	75.7	B3 76.1	9 B4 74.6	74.2	COW	75.8	75.3	B3 74.8	B4	75.0	75.6		
Number of samples BÜHLER EXTRACTION, %	B1		1 B3	9 B4		cow			В3	B4		-		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	B1 75.3	75.7	B3 76.1 9.5	9 B4 74.6	74.2 9.5	COW	75.8 12.2	75.3	B3 74.8	B4	75.0	75.6 11.4		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	B1 75.3 11.4 -1.7	75.7 10.3 -1.6	9.5 -1.4	9 B4 74.6 10.0 -1.4	9.5 -1.4	COW	75.8 12.2 -1.2	75.3 10.7 -1.7	B3 74.8 10.3 -1.4	B4 -	75.0 10.4 -1.0	75.6 11.4 -0.6		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	B1 75.3	75.7	B3 76.1 9.5	9 B4 74.6	74.2 9.5	COW	75.8 12.2	75.3	B3 74.8	B4	75.0	75.6 11.4		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	B1 75.3 11.4 -1.7	75.7 10.3 -1.6	9.5 -1.4	9 B4 74.6 10.0 -1.4 60.6	9.5 -1.4 61.5	COW	75.8 12.2 -1.2 64.7	75.3 10.7 -1.7 62.8	10.3 -1.4	B4 -	75.0 10.4 -1.0 60.4	75.6 11.4 -0.6 62.5		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	B1 75.3 11.4 -1.7 63.1 4.3	75.7 10.3 -1.6 60.8 3.8	9.5 -1.4 59.9 2.5	9 84 74.6 10.0 -1.4 60.6 3.7	9.5 -1.4 61.5 2.2		75.8 12.2 -1.2 64.7 4.5	75.3 10.7 -1.7 62.8 3.0	B3 74.8 10.3 -1.4 62.2 3.3	B4 -	75.0 10.4 -1.0 60.4 3.3	75.6 11.4 -0.6 62.5 4.7		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	B1 75.3 11.4 -1.7 63.1 4.3 6.1	75.7 10.3 -1.6 60.8 3.8 5.6	9.5 -1.4 59.9 2.5 5.6	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8	9.5 -1.4 61.5 2.2 4.3		75.8 12.2 -1.2 64.7 4.5 6.4	75.3 10.7 -1.7 62.8 3.0 6.4	10.3 -1.4 62.2 3.3 6.8		75.0 10.4 -1.0 60.4 3.3 6.4	75.6 11.4 -0.6 62.5 4.7 7.4		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	B1 75.3 11.4 -1.7 63.1 4.3 6.1	75.7 10.3 -1.6 60.8 3.8 5.6	9.5 -1.4 59.9 2.5 5.6	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74	9.5 -1.4 61.5 2.2 4.3		75.8 12.2 -1.2 64.7 4.5 6.4	75.3 10.7 -1.7 62.8 3.0 6.4	10.3 -1.4 62.2 3.3 6.8		75.0 10.4 -1.0 60.4 3.3 6.4	75.6 11.4 -0.6 62.5 4.7 7.4		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	B1 75.3 11.4 -1.7 63.1 4.3 6.1 58	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250	9.5 -1.4 59.9 2.5 5.6 51 64 275	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225	9.5 -1.4 61.5 2.2 4.3 59 45 205		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265	75.3 10.7 -1.7 62.8 3.0 6.4 40	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	B1 75.3 11.4 -1.7 63.1 4.3 6.1 58	75.7 10.3 -1.6 60.8 3.8 5.6 51	9.5 -1.4 59.9 2.5 5.6 51	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74	9.5 -1.4 61.5 2.2 4.3 59		75.8 12.2 -1.2 64.7 4.5 6.4 56	75.3 10.7 -1.7 62.8 3.0 6.4 40	83 74.8 10.3 -1.4 62.2 3.3 6.8 44		75.0 10.4 -1.0 60.4 3.3 6.4 43	75.6 11.4 -0.6 62.5 4.7 7.4 45		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	B1 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250	9.5 -1.4 59.9 2.5 5.6 51 64 275	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225	9.5 -1.4 61.5 2.2 4.3 59 45 205		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265	75.3 10.7 -1.7 62.8 3.0 6.4 40	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255		
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155	9.5 -1.4 59.9 2.5 5.6 51 64 275 153	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160	9.5 -1.4 61.5 2.2 4.3 59 45 205 149		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305 159		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80	9.5 -1.4 -59.9 2.5 5.6 51 -64 275 153 -25.5 79	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76	9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305 159		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184 33.5 87	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80 81	9.5 -1.4 -59.9 2.5 5.6 51 -64 275 153 -25.5 79	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76 85	9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82 63		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92 90	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91 73	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305 159 32.0 97 68		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87 77	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89 94		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80	9.5 -1.4 -59.9 2.5 5.6 51 -64 275 153 -25.5 79	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76	9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305 159		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 285 184 33.5 87 90 0.97	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80 81 0.98	9.5 -1.4 59.9 2.5 5.6 51 64 275 153 25.5 79 70 1.14	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76 85 0.89	74.2 9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82 63 1.31		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92 90 1.02	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91 73 1.24	62.2 3.3 6.8 44 71 305 159 32.0 97 68 1.42		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87 77 1.13	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89 94 0.95		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 78 285 184 33.5 87	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80 81	9.5 -1.4 -59.9 2.5 5.6 51 -64 275 153 -25.5 79	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76 85	9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82 63		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92 90	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91 73	83 74.8 10.3 -1.4 62.2 3.3 6.8 44 71 305 159 32.0 97 68		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87 77	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89 94		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 285 184 33.5 87 90 0.97	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80 81 0.98	9.5 -1.4 59.9 2.5 5.6 51 64 275 153 25.5 79 70 1.14	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76 85 0.89	74.2 9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82 63 1.31		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92 90 1.02	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91 73 1.24	62.2 3.3 6.8 44 71 305 159 32.0 97 68 1.42		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87 77 1.13	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89 94 0.95		
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	81 75.3 11.4 -1.7 63.1 4.3 6.1 58 285 184 33.5 87 90 0.97	75.7 10.3 -1.6 60.8 3.8 5.6 51 58 250 155 28.7 80 81 0.98	9.5 -1.4 59.9 2.5 5.6 51 64 275 153 25.5 79 70 1.14	9 B4 74.6 10.0 -1.4 60.6 3.7 4.8 74 54 225 160 27.1 76 85 0.89	74.2 9.5 -1.4 61.5 2.2 4.3 59 45 205 149 24.6 82 63 1.31		75.8 12.2 -1.2 64.7 4.5 6.4 56 76 265 198 36.1 92 90 1.02	75.3 10.7 -1.7 62.8 3.0 6.4 40 48 195 157 30.4 91 73 1.24	62.2 3.3 6.8 44 71 305 159 32.0 97 68 1.42		75.0 10.4 -1.0 60.4 3.3 6.4 43 63 270 153 31.3 87 77 1.13	75.6 11.4 -0.6 62.5 4.7 7.4 45 66 255 170 35.8 89 94 0.95		

MIXOGRAM

5

5

FARINOGRAM

6

EXTENSOGRAM

ALVEOGRAM

6

SUMMER RAINFALL AND IRRIGATION WHEAT Eastern Cape

PRODUCTION REGION

(8) Eastern Cape Northern Region

Intake silos

Aliwal-North Barkly-East Burgersdorp Cradock Elliot Golden Valley Jamestown Molteno Queenstown

IRRIGATION WHEAT Vaal and Orange river area

(10) Griqualand - West

Britstown
Douglas
Havenga Brug
Marydale
Modderrivier
Oranjerivierstasie
Prieska
Rietrivier
Upington

WHEAT	- 74-2											
D. 11.1. (400/h.) 0/	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	13.1		12.7	13.8		0.50	11.6		10.2	12.6		0.65
Falling number, sec	397		379	407		13.33	430		341	511		39.23
1000 Kernel mass (13% mb), g	37.1		34.7	40.1		2.24	39.6		33.7	44.0		2.52
Hectolitre mass (dirty), kg/hl	76.4		75.0	78.4		1.50	79.0		75.9	80.5		1.13
Screenings (<1.8mm), %	2.47		2.04	2.74		0.31	1.21		0.48	3.78		0.88
Total damaged kernels, %	0.36		0.06	0.50		0.21	0.19)	0.00	0.44	-	0.12
Number of samples				4						23		
CULTIVARS		227	015	22	2.5			227	Г 835	26	6.5	
cultivars			1 826		1.5	-			N 826		5.6	
			027									
with highest %					7.8 3.8	-			uzi 3434		3.3 1.1	
occurrence			806									
Number of samples		551	835	4	2.0			Bav	iaans	23).1	
Number of samples				4						23		
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave	11	min	max		stdev
Peak time, min	2.9		2.8	3.0		0.10	2.6		2.2	4.0		0.43
Tail height (6min), mm	49		48	51		1.26	47		42	50		2.25
Number of samples				4		0				23		
				10.00					112			
	B1	B2	В3	B4	UT	cow	B1	B2	В3	B4	UT	cow
BÜHLER EXTRACTION, %	-		-	75.1	-	-	77.1	77.0	76.1	-	-	-
FLOUR				100								
Protein (12% mb), %		17.11		11.9			11.8	10.5	10.2	17.4		
Colour, KJ			-	-1.3			-1.8	-2.6	-2.4			
Colour, No				1.0			1.0	2.0	2.7			
FARINOGRAM				07/15	100	77/79	1638	100				1 80
Water absorption (14% mb), %				62.0	-	-	62.1	60.3	58.0	-	-	-
Development time, min	30 07-17	-		5.0	-	-	4.7	3.7	3.2	-		-
Stability, min	-1/		77-	7.9	- / -	-	6.7	6.7	6.4	12		
Mixing tolerance index, BU	- V	-		41	-	-	51	50	57	W	-	-
EXTENSOGRAM (45 min pull)											9/3	
Area, cm2		-	-	101	-	-	89	90	91		10 -1	-
Maximum height, BU	J - J	-	-	335	-	-	290	335	365	-	-	1
Extensibility, mm	-	-	-	211	-		213	198	175	- /	-	1//-
	1 1 900			-								
ALVEOGRAM			14-14	40.7			25.0	04.4	20.5		14 11	
Strength (S), cm2		-	-	42.7	-	-	35.2	34.1	33.5	-	-	-
Stability (P), mm	-	-	-	78	-	-	77	72	64	-	-	-
Distensibility (L), mm	-	-	-	124	-	-	100	110	121	-	-	-
Configuration ratio (P/L)		-	-	0.63	-	-	0.76	0.66	0.52	-	-	-
MIXOGRAM Pook time, min				2.5			2.2	2.2	20			
Peak time, min		-	-	2.5	-	-	2.3	2.3	2.8	-	-	-
100g BAKING TEST	11 1976					1	10.1	1.4	75.0			
Loaf volume, cm3		-	-	930	- 1	1	950	900	940	-	-	-
Evaluation		-		0	77727		0	0	0	JUL 17	-	1

MIXOGRAM

10

FARINOGRAM

8

10

EXTENSOGRAM

8 10

ALVEOGRAM

IRRIGATION WHEAT Vaal and Orange river area

	(11)						(12)					
PRODUCTION REGION	Vaalhar	ts					North-V Wester	Vest n Regioi	1			
Intake silos	Barkly-V	Nest					Bloubar	_				
make clieb	Hartswa						Buhrma					
	Jan Ken						Kameel					
	Magogo	ng					Kraaipa					
	Taung						Madibo Mafiken					
							Mareets	_				
							Piet Ple					
							Springb	okpan				
							Vergele					
							Vryburg					
							Vryhof					
WHEAT	ave		min	max	5	stdev	ave		min	max		stdev
Protein (12% mb), %	11.8		10.6	12.8		0.58	13.5		12.5	15.5		1.15
Falling number, sec	446		378	574		50.22	446		417	521		37.00
1000 Kernel mass (13% mb), g	36.3		29.8	40.3		2.51	32.7		29.1	38.6		3.42
Hectolitre mass (dirty), kg/hl	77.5		75.7	80.8		1.16	75.8		73.2	78.9		1.84
Screenings (<1.8mm), %	2.83		1.75	4.64		0.80	1.89		0.16	3.60		1.43
Total damaged kernels, %	0.35		0.00	2.04		0.39	6.74		3.60	10.92		3.15
Number of samples			2	4					-	7		
CULTIVARS												
		CRN	826	64	.4			SST	835	46	5.7	
cultivars		Dı	uzi	13	.4			CRN	l 826	38	3.4	
with highest %		SST	835	11	.5			SST	806	6.		
occurrence		SST	806	2.	7		SST 822 3.4					
		SST	876	2.	6			Dı	ızi	2.	.9	
Number of samples			2	4						7		
MIXOGRAM (Quadromat)	21/2		min			at day.						stdev
Peak time, min	2.8		2.3	max 3.2		o.26	3.0		min 2.3	max 3.4		0.42
Tail height (6min), mm	47		43	51		2.27	51		47	57		3.61
Number of samples				4			- 01			7		0.01
				1015								
	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	cow
BÜHLER EXTRACTION, %	76.9	77.0	77.1	0	77.1	-	-	-	J -		76.0	76.5
FLOUR		12/14/										
Protein (12% mb), %	11.6	10.6	9.9		44.0							
Colour, KJ	-2.3		0.0		77()						13.6	123
ocioui, ito		-//	-23		11.0	-	-	-		-	13.6	12.3
FARINOGRAM	-2.5	-2.2	-2.3		-2.2	-		-		-	13.6	12.3 -2.0
	-2.5	-2.2	-2.3			_		-		-		
Water absorption (14% mb), %	60.0	58.5	-2.3 58.2			_		-		-		
Water absorption (14% mb), % Development time, min				- 1	-2.2					-	-1.4	-2.0
Development time, min Stability, min	60.0	58.5	58.2	-	-2.2 59.2			-	-	-	-1.4 62.6	-2.0 60.3
Development time, min	60.0	58.5 4.9	58.2 4.2	-	-2.2 59.2 4.5		-	-	-	-	-1.4 62.6 6.8	-2.0 60.3 6.0
Development time, min Stability, min Mixing tolerance index, BU	60.0 5.0 6.6	58.5 4.9 7.7	58.2 4.2 6.4		-2.2 59.2 4.5 7.1			-	-	-	-1.4 62.6 6.8 9.1	-2.0 60.3 6.0 10.9
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	60.0 5.0 6.6 55	58.5 4.9 7.7 43	58.2 4.2 6.4 49		59.2 4.5 7.1 50	-		-	-	-	-1.4 62.6 6.8 9.1 47	60.3 6.0 10.9 30
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	60.0 5.0 6.6 55	58.5 4.9 7.7 43	58.2 4.2 6.4 49		59.2 4.5 7.1 50	-				-	-1.4 62.6 6.8 9.1 47	-2.0 60.3 6.0 10.9 30
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	60.0 5.0 6.6 55 96 345	58.5 4.9 7.7 43 83 335	58.2 4.2 6.4 49 76 325		59.2 4.5 7.1 50 94 335	-			-	-	-1.4 62.6 6.8 9.1 47 129 360	-2.0 60.3 6.0 10.9 30 118 395
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	60.0 5.0 6.6 55	58.5 4.9 7.7 43	58.2 4.2 6.4 49		59.2 4.5 7.1 50	-				-	-1.4 62.6 6.8 9.1 47	-2.0 60.3 6.0 10.9 30
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	60.0 5.0 6.6 55 96 345	58.5 4.9 7.7 43 83 335	58.2 4.2 6.4 49 76 325		59.2 4.5 7.1 50 94 335	-			-	-	-1.4 62.6 6.8 9.1 47 129 360	-2.0 60.3 6.0 10.9 30 118 395
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	60.0 5.0 6.6 55 96 345	58.5 4.9 7.7 43 83 335	58.2 4.2 6.4 49 76 325		59.2 4.5 7.1 50 94 335	-			-	-	-1.4 62.6 6.8 9.1 47 129 360	-2.0 60.3 6.0 10.9 30 118 395
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	60.0 5.0 6.6 55 96 345 198 36.1 65	58.5 4.9 7.7 43 83 335 174	58.2 4.2 6.4 49 76 325 164		59.2 4.5 7.1 50 94 335 194	-			-		-1.4 62.6 6.8 9.1 47 129 360 242	-2.0 60.3 6.0 10.9 30 118 395 209
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	60.0 5.0 6.6 55 96 345 198	58.5 4.9 7.7 43 83 335 174	58.2 4.2 6.4 49 76 325 164		59.2 4.5 7.1 50 94 335 194	-					-1.4 62.6 6.8 9.1 47 129 360 242	60.3 6.0 10.9 30 118 395 209
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	60.0 5.0 6.6 55 96 345 198 36.1 65	58.5 4.9 7.7 43 83 335 174 32.4 65	58.2 4.2 6.4 49 76 325 164 31.7 66		59.2 4.5 7.1 50 94 335 194 35.5 68				-		-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	60.0 5.0 6.6 55 96 345 198 36.1 65	58.5 4.9 7.7 43 83 335 174 32.4 65 117	58.2 4.2 6.4 49 76 325 164 31.7 66 112		59.2 4.5 7.1 50 94 335 194 35.5 68 126						-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80 152	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72 149
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	60.0 5.0 6.6 55 96 345 198 36.1 65 138 0.47	58.5 4.9 7.7 43 83 335 174 32.4 65 117 0.55	58.2 4.2 6.4 49 76 325 164 31.7 66 112 0.59		59.2 4.5 7.1 50 94 335 194 35.5 68 126 0.54	-					-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80 152 0.53	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72 149 0.48
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	60.0 5.0 6.6 55 96 345 198 36.1 65	58.5 4.9 7.7 43 83 335 174 32.4 65 117	58.2 4.2 6.4 49 76 325 164 31.7 66 112		59.2 4.5 7.1 50 94 335 194 35.5 68 126						-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80 152	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72 149
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	60.0 5.0 6.6 55 96 345 198 36.1 65 138 0.47	58.5 4.9 7.7 43 83 335 174 32.4 65 117 0.55	58.2 4.2 6.4 49 76 325 164 31.7 66 112 0.59		59.2 4.5 7.1 50 94 335 194 35.5 68 126 0.54	-					-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80 152 0.53	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72 149 0.48
Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	60.0 5.0 6.6 55 96 345 198 36.1 65 138 0.47	58.5 4.9 7.7 43 83 335 174 32.4 65 117 0.55	58.2 4.2 6.4 49 76 325 164 31.7 66 112 0.59		59.2 4.5 7.1 50 94 335 194 35.5 68 126 0.54	-					-1.4 62.6 6.8 9.1 47 129 360 242 52.9 80 152 0.53	-2.0 60.3 6.0 10.9 30 118 395 209 45.7 72 149 0.48

MAINLY IRRIGATION WHEAT North-West Province

MIXOGRAM
12

FARINOGRAM

11 12

11

EXTENSOGRAM

11 12

ALVEOGRAM

MAINLY IRRIGATION WHEAT North-West Province

PRODUCTION REGION	(15) North-V South-E	Vest Eastern I	Region				(17) North-V Central		n Regio	n (Ottos	dal)	
Intake silos	Bloemh Christia	of					Bospoo Hartbee	rt sfontein	J	·		
	Hertzog						Kleinha					
	Hoopsta Kingswo						Melliodo Ottosda					
							Rostrata					
							Werda	S				
WHEAT	ave		min	may		stdev	21/0		min	may		stdev
Protein (12% mb), %	12.9		11.9	max 15.7		1.19	13.8		12.9	max 15.3		0.92
Falling number, sec	467		391	679		90.00	344		284	429		62.43
1000 Kernel mass (13% mb), g Hectolitre mass (dirty), kg/hl	34.3 76.0		28.6 73.3	41.7 77.8		5.25 1.42	32.1 74.1		27.2 70.5	36.6 77.9		2.66
Screenings (<1.8mm), %	1.62		0.10	8.34		2.73	3.79		1.82	6.71		1.71
Total damaged kernels, %	0.14		0.00	0.40		0.14	0.25		0.08	0.38	3	0.11
Number of samples				9						6		
CULTIVARS												
audain a an			826	20					1 826		3.3	
cultivars with highest %			835 3120		5.3 2.8				835		7.8	
occurrence			806		2.2				806		.0	
W. C.		PAN	3118		.4			SST	876		.7	
Number of samples				9				-		6		
MIXOGRAM (Quadromat)						. 4 . 1						
Peak time, min	2.6		min 2.0	max 3.2		o.38	2.8		min 2.5	max 3.2		o.24
									48			
Tail height (6min), mm	48		45	53		2.57	50			55		2.66
Tail height (6min), mm Number of samples				53 9		2.57	50			55 6		2.66
		B2			UT	2.57	50 B1	B2	В3		UT	2.66
	48	B2 75.9		9	UT 75.3			B2 -		6	UT 74.2	
Number of samples	48 B1		B3	9 B4		cow	B1		В3	6 B4		
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	48 B1	75.9 11.9	B3 76.7	B4 -	75.3	COW	B1 76.5		B3 -	6 B4	74.2 13.0	
Number of samples BÜHLER EXTRACTION, % FLOUR	81 -	75.9	B3 76.7	B4 -	75.3	COW	B1 76.5	-	B3 -	B4 -	74.2	COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	81 -	75.9 11.9 -2.0	B3 76.7 11.1 -1.7	B4 -	75.3 12.1 -1.5	COW	B1 76.5 12.1 -1.7		B3 -	6 B4 -	74.2 13.0 -1.4	COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	### ### ### ### ### ### ### ### ### ##	75.9 11.9 -2.0	11.1 -1.7 59.5	B4	75.3 12.1 -1.5 61.2	COW -	B1 76.5 12.1 -1.7 61.3	-	B3 - -	B4	74.2 13.0 -1.4 60.4	COW -
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	### ### ### ### ### ### ### ### ### ##	75.9 11.9 -2.0	B3 76.7 11.1 -1.7	B4 - -	75.3 12.1 -1.5	COW	B1 76.5 12.1 -1.7		B3 -	6 B4 -	74.2 13.0 -1.4	COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	B1	75.9 11.9 -2.0 61.7 5.7	11.1 -1.7 59.5 4.9	B4	75.3 12.1 -1.5 61.2 5.0	COW	B1 76.5 12.1 -1.7 61.3 4.0	-		6 B4	74.2 13.0 -1.4 60.4 4.2	
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	B1	75.9 11.9 -2.0 61.7 5.7 8.4	B3 76.7 11.1 -1.7 59.5 4.9 7.4	B4	75.3 12.1 -1.5 61.2 5.0 8.3		12.1 -1.7 61.3 4.0 6.9	-		6 B4	13.0 -1.4 60.4 4.2 8.2	
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	B1	75.9 11.9 -2.0 61.7 5.7 8.4 41	B3 76.7 11.1 -1.7 59.5 4.9 7.4	B4	75.3 12.1 -1.5 61.2 5.0 8.3		12.1 -1.7 61.3 4.0 6.9	-		6 B4	13.0 -1.4 60.4 4.2 8.2	
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375	983 76.7 11.1 -1.7 59.5 4.9 7.4 53 105 355		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46			6 B4	13.0 -1.4 60.4 4.2 8.2 35 133 395	
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2		75.9 11.9 -2.0 61.7 5.7 8.4 41	59.5 4.9 7.4 53		75.3 12.1 -1.5 61.2 5.0 8.3 38		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46			6 B4	13.0 -1.4 60.4 4.2 8.2 35	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193	59.5 4.9 7.4 53 105 355 212		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	13.0 -1.4 60.4 4.2 8.2 35 133 395 232	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193	59.5 4.9 7.4 53 105 355 212		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232	
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81	59.5 4.9 7.4 53 105 355 212		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193	59.5 4.9 7.4 53 105 355 212		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81 121	59.5 4.9 7.4 53 105 355 212 40.4 71 128		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78 125		81 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54 185	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81 121	59.5 4.9 7.4 53 105 355 212 40.4 71 128		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78 125		81 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54 185	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81 121 0.67	59.5 4.9 7.4 53 105 355 212 40.4 71 128 0.55		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78 125 0.62		81 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215 37.3 72 126 0.57			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54 185 0.29	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81 121 0.67	59.5 4.9 7.4 53 105 355 212 40.4 71 128 0.55		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78 125 0.62		B1 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215 37.3 72 126 0.57			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54 18.5 0.29	
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min		75.9 11.9 -2.0 61.7 5.7 8.4 41 106 375 193 42.8 81 121 0.67	59.5 4.9 7.4 53 105 355 212 40.4 71 128 0.55		75.3 12.1 -1.5 61.2 5.0 8.3 38 105 375 196 42.2 78 125 0.62		81 76.5 12.1 -1.7 61.3 4.0 6.9 46 113 355 215 37.3 72 126 0.57			6 B4	74.2 13.0 -1.4 60.4 4.2 8.2 35 133 395 232 37.8 54 185 0.29	

MIXOGRAM

17

15

FARINOGRAM

15 17

EXTENSOGRAM

15 17

ALVEOGRAM

MAINLY IRRIGATION WHEAT North-West Province

PRODUCTION REGION	(18) North-West Central Region (Ventersdorp)						(19) North-West Central Region (Lichtenburg)						
Intake silos	Bodenst						Grootpa Halfpad						
	Coligny Enselsp	ruit					Hibernia Lichtent						
	Makoksl						Lottieha	-					
	Potchefs Venters						Lusthof						
	venterso	чогр											
WHEAT	ave		min	max		stdev	ave		min	max		stdev	
Protein (12% mb), %	12.3		11.7	13.1		0.72	12.2		10.7	13.7		0.79	
Falling number, sec	329		289	355		35.36	396		290	480		50.26	
1000 Kernel mass (13% mb), g	35.8		34.4	37.5		1.56	34.6		28.1	38.8		2.97	
Hectolitre mass (dirty), kg/hl Screenings (<1.8mm), %	77.6 1.13		76.1 0.98	79.1 1.26		1.50 0.14	76.2 2.10		70.8 0.40	78.0 4.94		1.13	
Total damaged kernels, %	1.13		0.60	1.76		0.61	3.17		0.40	7.02		2.07	
Number of samples				3						13			
				911.6				15-95-1					
CULTIVARS		CRN	1 826	59	3			SST	835	64	1.3		
cultivars		SST		21					1 826		3.2		
with highest %		Di	ızi	9.	0			SST	806	4	.2		
occurrence			kodil	4.					nds		.8		
Number of complete		SST		3. 3	0			Dı	JZİ	2 13	.7		
Number of samples				3						13			
MIXOGRAM (Quadromat)													
	ave		min	max		stdev	ave		min	max		stdev	
Peak time, min	2.7		2.5	2.8		0.17	2.6		2.3	3.0		0.22	
			2.5						2.3				
Peak time, min Tail height (6min), mm	2.7 45		2.5	2.8 46 3		0.17 1.15	2.6 45		2.3	3.0 49		2.50	
Peak time, min Tail height (6min), mm Number of samples	2.7 45 B1	B2	2.5 44 B3	2.8 46 3	UT	0.17 1.15	2.6 45 B1	B2	2.3 42 B3	3.0 49 13	UT	0.22	
Peak time, min Tail height (6min), mm	2.7 45	B2 77.2	2.5	2.8 46 3		0.17 1.15	2.6 45		2.3	3.0 49		2.50	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.7 45 B1	77.2	2.5 44 B3	2.8 46 3	UT	0.17 1.15	2.6 45 B1 75.5	B2 76.4	2.3 42 B3	3.0 49 13 B4 75.9	UT 76.7	2.50	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	2.7 45 B1 -	77.2	2.5 44 B3	2.8 46 3 B4 -	UT -	0.17 1.15	2.6 45 B1 75.5	B2 76.4	2.3 42 B3	3.0 49 13 B4 75.9	UT 76.7	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.7 45 B1	77.2	2.5 44 B3	2.8 46 3	UT	0.17 1.15	2.6 45 B1 75.5	B2 76.4	2.3 42 B3	3.0 49 13 B4 75.9	UT 76.7	2.50	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.7 45 B1 -	77.2	2.5 44 B3	2.8 46 3 B4 -	UT -	0.17 1.15	2.6 45 B1 75.5	B2 76.4	2.3 42 B3	3.0 49 13 B4 75.9	UT 76.7	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	2.7 45 B1 -	77.2 10.9 -1.7 57.9	2.5 44 B3 -	2.8 46 3	UT	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5	B2 76.4 10.5 -2.1	2.3 42 B3 -	3.0 49 13 B4 75.9 11.2 -1.5	UT 76.7 11.1 -1.7 60.1	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0	2.5 44 B3	2.8 46 3	- -	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5	B2 76.4 10.5 -2.1 59.6 3.2	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4	11.1 -1.7 60.1 3.5	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	2.7 45 B1 -	77.2 10.9 -1.7 57.9 4.0 6.8	2.5 44 B3 -	2.8 46 3	UT	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3	B2 76.4 10.5 -2.1 59.6 3.2 5.2	2.3 42 B3 -	3.0 49 13 B4 75.9 11.2 -1.5	11.1 -1.7 60.1 3.5 5.7	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0	2.5 44 B3 -	2.8 46 3	- - -	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5	B2 76.4 10.5 -2.1 59.6 3.2	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2	11.1 -1.7 60.1 3.5	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54	2.5 44 B3	2.8 46 3	- - -	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58	B2 76.4 10.5 -2.1 59.6 3.2 5.2 60	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51	11.1 -1.7 60.1 3.5 5.7 58	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54	2.5 44 B3	2.8 46 3 B4 - - - - - -	- - - - -	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58	B2 76.4 10.5 -2.1 59.6 3.2 5.2 60	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51	UT 76.7 11.1 -1.7 60.1 3.5 5.7 58	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54	2.5 44 B3	2.8 46 3	- - -	0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58	B2 76.4 10.5 -2.1 59.6 3.2 5.2 60	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51	11.1 -1.7 60.1 3.5 5.7 58	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54	2.5 44 B3	2.8 46 3 B4 - - - - - - -		0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320	B2 76.4 10.5 -2.1 59.6 3.2 5.2 60 65 250	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51	UT 76.7 11.1 -1.7 60.1 3.5 5.7 58 91 305	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223	59.6 3.2 5.2 60 65 250 188	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	UT 76.7 11.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223	59.6 3.2 5.2 60 65 250 188	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	UT 76.7 11.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223	59.6 3.2 5.2 60 65 250 188	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	UT 76.7 11.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223	59.6 3.2 5.2 60 65 250 188	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	0.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57 130	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW -	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223 37.6 65 148	59.6 3.2 5.2 60 65 250 188 27.5 57	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	11.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 45 B1	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57 130 0.44	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW -	2.6 45 81 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223 37.6 65 148 0.44	59.6 3.2 5.2 60 65 250 188 27.5 57 121 0.47	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188 32.6 67 119 0.57	11.1 -1.7 60.1 3.5 5.7 58 91 305 207 32.1 63 126 0.50	0.22 2.50 COW	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.7 45	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57 130	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW -	2.6 45 B1 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223 37.6 65 148	59.6 3.2 5.2 60 65 250 188 27.5 57	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188	11.1 -1.7 60.1 3.5 5.7 58 91 305 207	0.22 2.50	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 45	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57 130 0.44	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW -	2.6 45 81 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223 37.6 65 148 0.44 2.3	59.6 3.2 5.2 60 65 250 188 27.5 57 121 0.47	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188 32.6 67 119 0.57	91 305 207 32.1 63 126 0.50	0.22 2.50	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.7 45	77.2 10.9 -1.7 57.9 4.0 6.8 54 100 330 204 29.8 57 130 0.44	2.5 44 B3	2.8 46 3 B4		0.17 1.15 COW -	2.6 45 81 75.5 11.9 -1.5 60.5 4.0 6.3 58 101 320 223 37.6 65 148 0.44	59.6 3.2 5.2 60 65 250 188 27.5 57 121 0.47	2.3 42 B3	3.0 49 13 B4 75.9 11.2 -1.5 60.3 3.4 6.2 51 69 260 188 32.6 67 119 0.57	11.1 -1.7 60.1 3.5 5.7 58 91 305 207 32.1 63 126 0.50	0.22 2.50	

MIXOGRAM
19

FARINOGRAM

19

EXTENSOGRAM

18 19

18

ALVEOGRAM

MAINLY IRRIGATION WHEAT North-West Province

PRODUCTION REGION

(20) North-West Eastern Region

Intake silos

Battery Boons Brits Derby Koster Rustenburg Swartruggens Syferbult

SUMMER RAINFALL WHEAT (AND IRRIGATION)
Free State Province (Central)
(21)
Free State
North-Western Region (Viljoenskroon)

Attie Groenebloem Heuningspruit Koppies Rooiwal Vierfontein Viljoenskroon Vredefort Weiveld

WHEAT		Service.										
Protoin (120/ mh) 0/	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	11.6		10.0 264	13.3		0.75	11.5 426		10.9	12.1		0.85
Falling number, sec 1000 Kernel mass (13% mb), g	411 39.4		33.2	540 43.5		76.29 3.20	35.2		34.6	448 35.7		31.11 0.78
Hectolitre mass (dirty), kg/hl	76.4		71.0	79.0		1.64	77.8		77.7	77.9		0.78
Screenings (<1.8mm), %	2.07		0.48	5.98		1.17	2.00		2.00	2.00		0.00
Total damaged kernels, %	0.76		0.40	1.90		0.42	0.19		0.18	0.20		0.00
Number of samples	0.70			25		0.42	0.18			2		0.01
Number of Samples				.5								
CULTIVARS	SST 835 29.4							CRI	N 826	60	0.0	
cultivars		D	uzi		9.1				835	40	0.0	
with highest %			1 826		1.0							
occurrence			iega		.6							
			ants		.8							
Number of samples				25						2		
									11,154			
MIXOGRAM (Quadromat)												
Deal Constitution	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	3.3		2.7	4.0		0.40	2.8		2.5	3.0		0.35
Tail height (6min), mm Number of samples	40		39	51 ?5		2.74	44	-	43	2		0.71
Number of Samples				.5								
	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	cow
BÜHLER EXTRACTION, %	77.2	76.2	77.1		76.7	-	76.5	() - ()	76.6		-	-
		10/14						- 1	111112			
FLOUR			11.5	Will I								
Protein (12% mb), %	11.3	10.6	9.8	-	10.6	-	11.0	-	9.7	-	-	-
Colour, KJ	-1.2	-1.7	-1.4		-0.9	-	-1.6	-	-2.0	-	-	-
FARINOGRAM												
Water absorption (14% mb), %	59.3	59.4	58.2		58.3		60.2		57.3			2
Development time, min	5.3	4.3	1.5	-	3.9	-	4.3	-	3.3		-	
Stability, min	9.6	7.6	7.7	-	7.9	-	6.3	-	6.3	-	-	-
Mixing tolerance index, BU	39	45	25		41		56	-	54	-	-	
EXTENSOGRAM (45 min pull)		40					1110			900	What	494
Area, cm2	109	91	72	-	100	-	87	10	80	-	-5	-
Maximum height, BU	400	340	320	-	390	-	310	7/1-	345	10	-	-//
Extensibility, mm	195	194	163	9	179		199	-	166	- 0	11-1	1/-
ALVEOGRAM												
Strength (S), cm2	39.1	33.8	33.9	-	36.2		31.3	-	28.4	- 1	-	-
Stability (P), mm	73	69	74	-	67	-	65	-	62	- 1	1 - 1	- //
Distensibility (L), mm	114	110	99		118	-	116	-	105	W-	-	-/-
Configuration ratio (P/L)	0.64	0.63	0.75	4-2	0.57	-	0.56	-	0.59	- 61	- 1	-
	Time.		1000					1/4		1	1	
MIXOGRAM	0.0	20	20	143	2.0		2.4		2.0			144
Peak time, min	3.2	2.8	3.0	-	3.3	-	2.4	-	2.8	-	-	-
100g BAKING TEST		The second					4.7	118				
Loaf volume, cm3	940	955	895	1	940		1015	1 1	930	-	-	-
Evaluation	0	0	0	-	0	-	0	7-	0	-	-	-

MIXOGRAM

20 21

FARINOGRAM

20 21

EXTENSOGRAM

20 21

ALVEOGRAM

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (Central)

PRODUCTION REGION	(26) Free St		Pagion (Senekal			(27) Free Sta	ate n Regio	n			
Intake silos	Arlingto Kaallaa	n	Kegion (Sellekai			Gottenb	urg	"			
	Libertas	3					Hoogte					
	Marqua Meets	rd					Mooigel Petrus S					
	Monte \	/ideo					Wolweh					
	Seneka											
	Steynsr	us										
WHEAT	411.00	ALC: N										
Protein (12% mb), %	14.0		min 10.2	max 16.0		1.51	12.8		min 9.7	max 14.4		stdev 2.69
Falling number, sec	320		208	445		51.94	370		352	403		28.88
1000 Kernel mass (13% mb), g	34.2		25.4	42.5		4.00	35.3		30.1	38.1		4.53
Hectolitre mass (dirty), kg/hl	77.2		72.7	79.4		1.52	77.9		72.3	81.0		4.83
Screenings (<1.8mm), %	1.36		0.17	4.74		1.26	1.15		80.0	3.14		1.72
Total damaged kernels, % Number of samples	0.71		0.08	4.88		1.09	0.24		0.00	0.42 3		0.22
Number of Sumples												
CULTIVARS												
oultivers			nds 835	51 11					nds 835		3.7 3.3	
cultivars with highest %			riep	6					826		.7	
occurrence			a DN	5.					356	8		
		PAN	3355	4.	.4			Betta	a DN		.3	
Number of samples			2	25						3		
MIXOGRAM (Quadromat)												
(4	ave		min	max		stdev	ave		min	max		stdev
	4.0					stuev				IIIda		
Peak time, min	3.6		2.8	4.7		0.48	3.4		3.2	3.7		0.29
Tail height (6min), mm	1		2.8	4.7 70					3.2 44	3.7 57		
	3.6		2.8	4.7		0.48	3.4		3.2 44	3.7		0.29
Tail height (6min), mm Number of samples	3.6 55 B1	B2	2.8 43 2	4.7 70 25 B4	UT	0.48 5.07	3.4 52 B1	B2	3.2 44	3.7 57 3	UT	0.29
Tail height (6min), mm	3.6 55		2.8 43	4.7 70		0.48 5.07	3.4 52	B2 -	3.2	3.7 57		0.29 6.81
Tail height (6min), mm Number of samples	3.6 55 B1	B2	2.8 43 2	4.7 70 25 B4	UT	0.48 5.07	3.4 52 B1		3.2 44	3.7 57 3	UT	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	3.6 55 B1 75.3	B2 76.2	2.8 43 2 B3 75.1	4.7 70 25 B4 73.7	UT 73.3	0.48 5.07 COW	3.4 52 B1 75.9		3.2 44	3.7 57 3 B4 77.6	UT 73.9	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	3.6 55 B1 75.3	B2 76.2	2.8 43 2 83 75.1	4.7 70 25 B4 73.7	UT 73.3	0.48 5.07	3.4 52 B1 75.9	-	3.2 44 B3	3.7 57 3 B4 77.6	UT 73.9	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	3.6 55 B1 75.3	B2 76.2	2.8 43 2 B3 75.1	4.7 70 25 B4 73.7	UT 73.3	0.48 5.07 COW	3.4 52 B1 75.9		3.2 44 B3	3.7 57 3 B4 77.6	UT 73.9	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	3.6 55 B1 75.3	B2 76.2	2.8 43 2 B3 75.1	4.7 70 25 B4 73.7	UT 73.3	0.48 5.07 COW	3.4 52 B1 75.9		3.2 44 B3	3.7 57 3 B4 77.6	UT 73.9	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.6 55 B1 75.3 13.4 -0.2	12.6 -0.5 61.3 5.0	2.8 43 2 75.1 11.3 -1.1 60.4 4.5	4.7 70 75 84 73.7 13.1 -0.4 61.5 5.0	11.9 -1.6 59.1 3.9	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1	-	3.2 44 B3 - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0	13.5 0.0 64.1 5.5	0.29 6.81 COW - - -
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5	12.6 -0.5 61.3 5.0	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5	4.7 70 75 B4 73.7 13.1 -0.4 61.5 5.0 9.2	11.9 -1.6 59.1 3.9 9.1	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4	-	3.2 44 B3 - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0	13.5 0.0 64.1 5.5 11.5	0.29 6.81 COW - - - - -
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.6 55 B1 75.3 13.4 -0.2	12.6 -0.5 61.3 5.0	2.8 43 2 75.1 11.3 -1.1 60.4 4.5	4.7 70 75 84 73.7 13.1 -0.4 61.5 5.0	11.9 -1.6 59.1 3.9	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1	-	3.2 44 B3 - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0	13.5 0.0 64.1 5.5	0.29 6.81 COW - - -
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31	12.6 -0.5 61.3 5.0 11.3 28	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32	4.7 70 15 13.1 -0.4 61.5 5.0 9.2 35	11.9 -1.6 59.1 3.9 9.1 34	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4	-	3.2 44 B3 - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44	13.5 0.0 64.1 5.5 11.5 25	0.29 6.81 COW - - - - -
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31	12.6 -0.5 61.3 5.0 11.3 28	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88	4.7 70 15 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108	UT 73.3 11.9 -1.6 59.1 3.9 9.1 34	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7	-	3.2 44 B3 - - - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44	13.5 0.0 64.1 5.5 11.5 25	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31	12.6 -0.5 61.3 5.0 11.3 28	2.8 43 2 83 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360	4.7 70 15 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390	11.9 -1.6 59.1 3.9 9.1 34	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3 - - - - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330	13.5 0.0 64.1 5.5 11.5 25	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31	12.6 -0.5 61.3 5.0 11.3 28	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88	4.7 70 15 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108	UT 73.3 11.9 -1.6 59.1 3.9 9.1 34	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7	-	3.2 44 B3 - - - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44	13.5 0.0 64.1 5.5 11.5 25	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200	12.6 -0.5 61.3 5.0 11.3 28 112 380 200	2.8 43 2 83 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168	4.7 70 75 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192	59.1 3.9 9.1 34 115 430 183	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3 - - - - - -	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200	12.6 -0.5 61.3 5.0 11.3 28 112 380 200	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168	4.7 70 155 B4 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5	59.1 3.9 9.1 34 115 430 183	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3 	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200	12.6 -0.5 61.3 5.0 11.3 28 112 380 200	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168	4.7 70 15 184 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92	59.1 3.9 9.1 34 115 430 183	0.48 5.07 COW -	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3 	3.7 57 3 84 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200 53.5 102	12.6 -0.5 61.3 5.0 11.3 28 112 380 200 48.8 87 116	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168 33.6 79 88	4.7 70 75 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92 103	11.9 -1.6 59.1 3.9 9.1 34 115 430 183 43.6 85 100	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3 	3.7 57 3 84 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69 97	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81 COW
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200	12.6 -0.5 61.3 5.0 11.3 28 112 380 200	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168	4.7 70 15 184 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92	59.1 3.9 9.1 34 115 430 183	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3	3.7 57 3 84 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200 53.5 102 100 1.02	12.6 -0.5 61.3 5.0 11.3 28 112 380 200 48.8 87 116 0.75	2.8 43 2 83 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168 33.6 79 88 0.89	4.7 70 75 B4 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92 103 0.89	11.9 -1.6 59.1 3.9 9.1 34 115 430 183 43.6 85 100 0.85	0.48 5.07	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7 123 430 200 62.7 123 91 1.35		3.2 44 B3 	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69 97 0.71	13.5 0.0 64.1 5.5 11.5 25 109 375 206 51.8 101 98 1.03	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200 53.5 102	12.6 -0.5 61.3 5.0 11.3 28 112 380 200 48.8 87 116	2.8 43 2 B3 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168 33.6 79 88	4.7 70 75 84 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92 103	11.9 -1.6 59.1 3.9 9.1 34 115 430 183 43.6 85 100	0.48 5.07 COW	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7		3.2 44 B3	3.7 57 3 84 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69 97	13.5 0.0 64.1 5.5 11.5 25 109 375 206	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200 53.5 102 100 1.02	12.6 -0.5 61.3 5.0 11.3 28 112 380 200 48.8 87 116 0.75	2.8 43 2 83 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168 33.6 79 88 0.89	4.7 70 75 B4 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92 103 0.89	11.9 -1.6 59.1 3.9 9.1 34 115 430 183 43.6 85 100 0.85	0.48 5.07	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7 123 430 200 62.7 123 91 1.35		3.2 44 B3 	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69 97 0.71	13.5 0.0 64.1 5.5 11.5 25 109 375 206 51.8 101 98 1.03	0.29 6.81
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.6 55 B1 75.3 13.4 -0.2 62.9 6.2 13.5 31 123 425 200 53.5 102 100 1.02	12.6 -0.5 61.3 5.0 11.3 28 112 380 200 48.8 87 116 0.75	2.8 43 2 83 75.1 11.3 -1.1 60.4 4.5 9.5 32 88 360 168 33.6 79 88 0.89	4.7 70 75 B4 73.7 13.1 -0.4 61.5 5.0 9.2 35 108 390 192 48.5 92 103 0.89	11.9 -1.6 59.1 3.9 9.1 34 115 430 183 43.6 85 100 0.85	0.48 5.07	3.4 52 B1 75.9 13.6 0.1 64.8 7.2 16.4 7 123 430 200 62.7 123 91 1.35		3.2 44 B3 	3.7 57 3 B4 77.6 8.9 -2.1 58.4 2.0 6.0 44 80 330 166 28.7 69 97 0.71	13.5 0.0 64.1 5.5 11.5 25 109 375 206 51.8 101 98 1.03	0.29 6.81

MIXOGRAM

27

26

FARINOGRAM

26 27

EXTENSOGRAM

26 27

ALVEOGRAM

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (North-Western)

PRODUCTION REGION	(22) Free-St North-V		Region ((Bothavil	le)		(23) Free-St North-V		Region ((Bultfont	ein)	
Intake silos	Allanride Bothavi	_					Bultfont	ns				
	Mirage Odenda	alsrus					Protesp Tierfont					
	Schoon	spruit					Wessels	sbron				
	Schutte	sdraai					Willems	rust				
WHEAT	21/0	HAR.	min	may		stdev	21/0		min	may		stdev
Protein (12% mb), %	14.4		12.7	max 16.4		1.25	12.9		10.5	max 15.3		1.18
Falling number, sec	320		243	378		43.19	379		233	539		75.83
1000 Kernel mass (13% mb), g Hectolitre mass (dirty), kg/hl	33.5 76.8		28.6 74.8	37.5 78.5		2.73 1.09	32.8 77.2		28.8 74.7	36.7 80.6		1.42
Screenings (<1.8mm), %	1.97		1.00	2.87		0.72	2.12		0.63	3.53		0.74
Total damaged kernels, %	0.38		0.16	0.80		0.18	0.29		0.08	1.17		0.23
Number of samples			1	0					2	23		
CULTIVARS												
		CRN	826	25	.8			CRN	l 826	27	'.4	
cultivars			3120	16					3118).4	
with highest % occurrence			3118 3349	15 14					3120 3349		3.3 .6	
5554.151.155			3355	7.			3		riep		.3	
Number of samples			1	0					2	23		
MIXOGRAM (Quadromat)												
Dark the second	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.9								4.0			
Tail height (6min) mm			2.2	3.3		0.36	2.9		1.8	3.7		0.40
Tail height (6min), mm Number of samples	54		48	3.3 60		0.36 3.72	2.9 51		41	3.7 55		
	54		48	60 0		3.72	51		41	55 23		3.41
		B2 74.3	48	60				B2 75.7	41	55	UT 74.3	0.40
Number of samples BÜHLER EXTRACTION, %	54 B1		48 1 B3	60 0 B4	UT	3.72 COW	51 B1		41 2	55 23 B4		3.41
Number of samples BÜHLER EXTRACTION, % FLOUR	54 B1 74.9	74.3	48 1 83 73.3	60 0 B4	UT	3.72 COW	51 B1 74.9	75.7	41 2 B3 74.5	55 23 B4	74.3	3.41
Number of samples BÜHLER EXTRACTION, %	54 B1		48 1 B3	60 0 B4	UT	3.72 COW	51 B1		41 2	55 23 B4		3.41
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	B1 74.9	74.3	48 1 83 73.3	60 B4 -	UT -	3.72 COW -	51 B1 74.9	75.7	41 B3 74.5	55 23 B4 -	74.3	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	B1 74.9	74.3	48 1 83 73.3	60 B4 -	UT -	3.72 COW -	51 B1 74.9	75.7 11.8 -1.4	41 B3 74.5	55 23 B4 -	74.3	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	13.0 -0.8 62.4 5.0	74.3 12.8 -0.7 62.6 4.7	15.4 -1.4 66.4 8.2	60 B4	UT	3.72 COW	51 B1 74.9 12.4 -1.6 62.4 5.2	75.7 11.8 -1.4 61.2 5.0	41 2 B3 74.5 12.3 -1.6 61.5 4.4	55 23 B4	74.3 11.4 -1.9 60.7 4.9	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	13.0 -0.8 62.4 5.0 8.2	74.3 12.8 -0.7 62.6 4.7 9.2	15.4 -1.4 66.4 8.2 17.1	60 B4	UT	3.72 COW	51 B1 74.9 12.4 -1.6 62.4 5.2 9.0	75.7 11.8 -1.4 61.2 5.0 8.1	B3 74.5 12.3 -1.6 61.5 4.4 7.7	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	13.0 -0.8 62.4 5.0	74.3 12.8 -0.7 62.6 4.7	15.4 -1.4 66.4 8.2	60 B4	UT	3.72 COW	51 B1 74.9 12.4 -1.6 62.4 5.2	75.7 11.8 -1.4 61.2 5.0	41 2 B3 74.5 12.3 -1.6 61.5 4.4	55 23 B4	74.3 11.4 -1.9 60.7 4.9	0.40 3.41 COW -
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	13.0 -0.8 62.4 5.0 8.2 43	74.3 12.8 -0.7 62.6 4.7 9.2 34	15.4 -1.4 -66.4 8.2 17.1	60 B4	UT	3.72 COW	51 B1 74.9 12.4 -1.6 62.4 5.2 9.0 36	75.7 11.8 -1.4 61.2 5.0 8.1 38	12.3 -1.6 61.5 4.4 7.7 39	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	13.0 -0.8 62.4 5.0 8.2 43	74.3 12.8 -0.7 62.6 4.7 9.2 34	183 73.3 15.4 -1.4 66.4 8.2 17.1 19	60 B4		3.72	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36	75.7 11.8 -1.4 61.2 5.0 8.1 38	12.3 -1.6 61.5 4.4 7.7 39	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345	15.4 -1.4 -1.4 -1.5 -1.5 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	60 B4		3.72 COW	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	13.0 -0.8 62.4 5.0 8.2 43	74.3 12.8 -0.7 62.6 4.7 9.2 34	183 73.3 15.4 -1.4 66.4 8.2 17.1 19	60 B4		3.72	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36	75.7 11.8 -1.4 61.2 5.0 8.1 38	12.3 -1.6 61.5 4.4 7.7 39	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205	183 73.3 15.4 -1.4 66.4 8.2 17.1 19 135 395 236			3.72 COW	51 B1 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173	0.40 3.41 COW
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205	183 73.3 15.4 -1.4 66.4 8.2 17.1 19 135 395 236	60 B4		3.72	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205	15.4 -1.4 66.4 8.2 17.1 19 135 395 236 65.0 122 98		UT	3.72	51 B1 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197 41.0 84	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205 41.3 89	183 73.3 15.4 -1.4 66.4 8.2 17.1 19 135 395 236			3.72 COW	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210 45.9 89	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201 39.4 85	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177 41.1 81	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173 43.1 88	0.40 3.41 COW
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197 41.0 84 106	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205 41.3 89 97	15.4 -1.4 66.4 8.2 17.1 19 135 395 236 65.0 122 98			3.72 COW	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210 45.9 89 108	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201 39.4 85 96	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177 41.1 81 108	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173 43.1 88 99	0.40 3.41 COW
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197 41.0 84 106	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205 41.3 89 97	15.4 -1.4 66.4 8.2 17.1 19 135 395 236 65.0 122 98			3.72 COW	51 81 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210 45.9 89 108	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201 39.4 85 96	41 2 B3 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177 41.1 81 108	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173 43.1 88 99	0.40 3.41 COW
BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197 41.0 84 106 0.78	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205 41.3 89 97 0.92	15.4 -1.4 66.4 8.2 17.1 19 135 395 236 65.0 122 98 1.25		UT	3.72 COW	51 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210 45.9 89 108 0.82	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201 39.4 85 96 0.88	83 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177 41.1 81 108 0.75	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173 43.1 88 99 0.88	0.40 3.41
Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	54 B1 74.9 13.0 -0.8 62.4 5.0 8.2 43 96 340 197 41.0 84 106 0.78	74.3 12.8 -0.7 62.6 4.7 9.2 34 100 345 205 41.3 89 97 0.92	15.4 -1.4 66.4 8.2 17.1 19 135 395 236 65.0 122 98 1.25		UT	3.72 COW	51 74.9 12.4 -1.6 62.4 5.2 9.0 36 118 385 210 45.9 89 108 0.82	75.7 11.8 -1.4 61.2 5.0 8.1 38 113 380 201 39.4 85 96 0.88	83 74.5 12.3 -1.6 61.5 4.4 7.7 39 91 355 177 41.1 81 108 0.75	55 23 B4	74.3 11.4 -1.9 60.7 4.9 10.0 34 96 395 173 43.1 88 99 0.88	0.40 3.41

MIXOGRAM

23

22

FARINOGRAM

22

EXTENSOGRAM

22 23

ALVEOGRAM

SOUTH AFRICAN

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (Eastern)

PRODUCTION REGION	(25) Free St	ate					(28) Free Sta	ate				
	South-\	Vestern	Region	(Bethleh	em)		Eastern	Region				
Intake silos	Bethleh	em					Afrikask	op				
intante silos	Clocola						Ascent	-				
	De Wet						Cornelia	1				
	Ficksbu	rg					Daniëlsı	us				
	Fouries	-					Eeram					
	Marseill						Frankfo					
	Modder	•					Harrism					
	Slabber						Jim Fou					
	Tweesp Westmi						Kransfo Memel	ntein				
	Zastron						Reitz					
	24311011						Tweeling	2				
							Villiers	9				
							Vrede					
							Warden					
							Windfiel	d				
WHEAT												
Protoin (129/ mh) 9/	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	13.5		10.6	17.3		1.63	13.2		10.0	15.2		1.40
Falling number, sec	314		207	436		61.19	376		286	591		64.30
1000 Kernel mass (13% mb), g	35.8		25.4	41.8		4.43	37.0		31.5	41.6		2.41
Hectolitre mass (dirty), kg/hl	77.6		68.2	81.3		2.40	78.5		75.2	81.1		1.55
Screenings (<1.8mm), %	1.49		0.42	3.85		0.76	0.87		0.16	2.54		0.56
Total damaged kernels, %	0.33	5	0.00	1.62		0.33	0.46		0.08	1.00		0.28
Number of samples				1						29		
CULTIVARS												
OCETIVARO		Fla	nds	45	1			Fla	nds	30	1	
cultivars			835	7.					835	28		
with highest %			abas	6.				CRN		4.		
occurrence			946	5.					876	4.		
occurrence			3355	5.				Matl		4.		
Number of samples		IAN		11	.0			IVICU		29		
Number of Sumples									-		-	
MIXOGRAM (Quadromat)												
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev
MIXOGRAM (Quadromat) Peak time, min	ave 3.4		min 2.5	max 4.5		stdev 0.52	ave 3.2		min 2.0	max 4.0		stdev 0.48
	1						1					
Peak time, min	3.4		2.5	4.5		0.52	3.2		2.0	4.0		0.48
Peak time, min Tail height (6min), mm	3.4 54		2.5	4.5 62		0.52 4.78	3.2 53		2.0	4.0 63		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples	3.4 54 B1	B2	2.5 43 3	4.5 62 11	UT	0.52 4.78	3.2 53 B1	B2	2.0 43 2	4.0 63 29 B4	UT	0.48
Peak time, min Tail height (6min), mm	3.4 54		2.5	4.5 62		0.52 4.78	3.2 53	B2 75.5	2.0 43	4.0 63		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	3.4 54 B1	B2	2.5 43 3	4.5 62 11	UT	0.52 4.78	3.2 53 B1		2.0 43 2	4.0 63 29 B4	UT	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	3.4 54 B1 74.5	B2 75.5	2.5 43 3 B3 75.1	4.5 62 21 B4 75.0	UT -	0.52 4.78	3.2 53 B1 76.0	75.5	2.0 43 2 B3 76.0	4.0 63 29 B4	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	3.4 54 B1 74.5	B2 75.5	2.5 43 3 B3 75.1	4.5 62 11 84 75.0	UT -	0.52 4.78 COW	3.2 53 B1 76.0	75.5	2.0 43 2 B3 76.0	4.0 63 29 B4 -	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	3.4 54 B1 74.5	B2 75.5	2.5 43 3 B3 75.1	4.5 62 21 B4 75.0	UT -	0.52 4.78	3.2 53 B1 76.0	75.5	2.0 43 2 B3 76.0	4.0 63 29 B4	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	3.4 54 B1 74.5	B2 75.5	2.5 43 3 B3 75.1	4.5 62 11 84 75.0	UT -	0.52 4.78 COW	3.2 53 B1 76.0	75.5	2.0 43 2 B3 76.0	4.0 63 29 B4 -	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	3.4 54 B1 74.5 13.4 -1.1	B2 75.5 11.4 -1.1	2.5 43 3 75.1 11.2 -1.1	4.5 62 11 84 75.0 12.7 -0.9	UT -	0.52 4.78 COW	3.2 53 B1 76.0 12.5	75.5 11.8 -1.1	2.0 43 2 83 76.0 10.6 -2.0	4.0 63 29 B4 -	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	3.4 54 B1 74.5	B2 75.5 11.4 -1.1 61.3	2.5 43 3 75.1 11.2 -1.1	4.5 62 75.0 12.7 -0.9	UT	0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5	75.5 11.8 -1.1	2.0 43 2 83 76.0 10.6 -2.0	4.0 63 29 B4 -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0	B2 75.5 11.4 -1.1 61.3 4.7	2.5 43 3 75.1 11.2 -1.1 60.4 5.0	4.5 62 75.0 12.7 -0.9 63.0 4.7	UT	0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5	75.5 11.8 -1.1 63.0 3.2	2.0 43 2 83 76.0 10.6 -2.0 60.9 3.9	4.0 63 29 B4 - -	UT -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0	11.4 -1.1 61.3 4.7 9.9	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0	75.5 11.8 -1.1 63.0 3.2 8.0	2.0 43 2 83 76.0 10.6 -2.0 60.9 3.9 6.3	4.0 63 29 B4 - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0	B2 75.5 11.4 -1.1 61.3 4.7	2.5 43 3 75.1 11.2 -1.1 60.4 5.0	4.5 62 75.0 12.7 -0.9 63.0 4.7		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5	75.5 11.8 -1.1 63.0 3.2	2.0 43 2 83 76.0 10.6 -2.0 60.9 3.9	4.0 63 29 B4 - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0	11.4 -1.1 61.3 4.7 9.9	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0	75.5 11.8 -1.1 63.0 3.2 8.0	2.0 43 2 83 76.0 10.6 -2.0 60.9 3.9 6.3	4.0 63 29 B4 - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0	11.4 -1.1 61.3 4.7 9.9	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0	75.5 11.8 -1.1 63.0 3.2 8.0	2.0 43 2 83 76.0 10.6 -2.0 60.9 3.9 6.3	4.0 63 29 B4 - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8	11.4 -1.1 61.3 4.7 9.9 35	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40	4.5 62 84 75.0 12.7 -0.9 63.0 4.7 9.0 36	- - - -	0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32	75.5 11.8 -1.1 63.0 3.2 8.0 36	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48	4.0 63 29 B4 - - - -	- - -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31	B2 75.5 11.4 -1.1 61.3 4.7 9.9 35	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40	4.5 62 75.0 12.7 -0.9 63.0 4.7 9.0 36	- - - - -	0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32	75.5 11.8 -1.1 63.0 3.2 8.0 36	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48	4.0 63 29 B4 - - - - -	- - - -	0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31	11.4 -1.1 61.3 4.7 9.9 35	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0 36		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305	4.0 63 29 B4 - - - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31	11.4 -1.1 61.3 4.7 9.9 35	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0 36		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305	4.0 63 29 B4 - - - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31	11.4 -1.1 61.3 4.7 9.9 35	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375	4.5 62 11 84 75.0 12.7 -0.9 63.0 4.7 9.0 36		0.52 4.78 COW	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305	4.0 63 29 B4 - - - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171	4.5 62 62 75.0 12.7 -0.9 63.0 4.7 9.0 36		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184	4.0 63 29 B4 - - - - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171	4.5 62 11 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184	4.0 63 29 B4 - - - - - -		0.48 4.98
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86	4.5 62 11 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82	4.0 63 29 B4 - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94	4.5 62 11 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96	4.0 63 29 B4 - - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117 0.84	11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91 1.10	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94 0.91	4.5 62 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216 52.3 96 112 0.86		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103 107 0.96	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103 0.98	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96 0.85	4.0 63 29 B4 - - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94	4.5 62 11 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96	4.0 63 29 B4 - - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117 0.84	11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91 1.10	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94 0.91	4.5 62 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216 52.3 96 112 0.86		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103 107 0.96	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103 0.98	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96 0.85	4.0 63 29 B4 - - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117 0.84	82 75.5 11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91 1.10	2.5 43 33 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94 0.91	4.5 62 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216 52.3 96 112 0.86		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103 107 0.96	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103 0.98	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96 0.85	4.0 63 29 B4 - - - - - - - - -		0.48 4.98 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.4 54 B1 74.5 13.4 -1.1 63.6 5.0 10.8 31 124 385 221 56.6 98 117 0.84	11.4 -1.1 61.3 4.7 9.9 35 110 440 175 47.7 101 91 1.10	2.5 43 3 75.1 11.2 -1.1 60.4 5.0 8.3 40 94 375 171 39.3 86 94 0.91	4.5 62 75.0 12.7 -0.9 63.0 4.7 9.0 36 127 410 216 52.3 96 112 0.86		0.52 4.78	3.2 53 B1 76.0 12.5 -0.5 63.5 6.2 11.0 32 115 385 211 54.9 103 107 0.96	75.5 11.8 -1.1 63.0 3.2 8.0 36 107 385 194 51.2 101 103 0.98	2.0 43 2 B3 76.0 10.6 -2.0 60.9 3.9 6.3 48 81 305 184 36.4 82 96 0.85	4.0 63 29 B4 - - - - - - - -		0.48 4.98 COW

MIXOGRAM

25 28

FARINOGRAM

25 28

EXTENSOGRAM

25 28

ALVEOGRAM

SOUTH AFRICAN

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (South-Western)

PRODUCTION REGION

(24) Free State Central Region

Intake silos

Bloemfontein Brandfort De Brug Geneva Hennenman Koffiefontein Kroonstad Petrusburg Theunissen Van Tonder Welgeleë Winburg

OTHER SUMMER RAINFALL AND IRRIGATION WHEAT Mpumalanga

Mpumalanga (30) Mpumalanga Eastern Region

Amersfoort Badplaas Carolina Davel Ermelo Estancia Lothair Maizefield Mkondo Morgenzon Overvaal Panbult

WHEAT	72.2											
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	13.4		10.9	15.9		1.27	12.6		12.6	12.7		0.06
Falling number, sec	347		138	527		80.84	438		414	473		30.83
1000 Kernel mass (13% mb), g	31.2		25.2	40.2		3.92	40.2		39.9	40.5		0.30
Hectolitre mass (dirty), kg/hl	76.1		72.3	78.8		1.86	80.0		79.8	80.2		0.20
Screenings (<1.8mm), % Total damaged kernels, %	0.30		0.64	5.44 1.04		0.26	2.57 0.16		0.12	2.66		0.09
Number of samples	0.30			7		0.20	0.10			3		0.03
Transcr or samples												
CULTIVARS		PAN	3118	25	7			Dı	uzi	31	1.3	
cultivars			riep	13					835		1.7	
with highest %			826	12					876		1.7	
occurrence		PAN	3120	11	.2			CRN	1 826	11	.0	
		PAN	3377	6.	.1			SST	822	9	.3	
Number of samples			1	7						3		
MIVOCRAM (Overdremet)												
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	3.3		2.3	4.8		0.65	2.3		2.3	2.3		0.00
Tail height (6min), mm	54		48	66		5.48	47		46	48 3		1.15
Number of samples				/	-					3		
	B1	B2	В3	B4	UT	cow	B1	B2	B3	B4	UT	cow
BÜHLER EXTRACTION, %	74.2	75.0	74.4	73.5	-	73.2	77.1	-	7 -			
El OUD		14/4										
FLOUR Protein (12% mb), %	12.9	12.8	11.6	13.4		12.6	11.7					
Colour, KJ	-1.4	-1.0	-1.3	0.0		-0.9	-1.9	-		-	-	_
Colour, No	-1.4	-1.0	-1.5	0.0		-0.3	-1.5					
FARINOGRAM						77/16						
Water absorption (14% mb), %	63.9	61.9	61.6	62.2	-	58.9	62.1	-	- 1		-	-
Development time, min	4.8	5.2	4.0	5.3	-	3.5	4.8	/ F	-	-		
Stability, min	9.3	10.9	7.8	10.6		8.0	7.1	-	7-	-		-
Mixing tolerance index, BU	33	32	37	30	-	39	48	-	-	-	-	-
EXTENSOGRAM (45 min pull)												
Area, cm2	95	140	99	133		106	80	1-1	- 1	-	1 -1	211
Maximum height, BU	335	420	385	405		370	295	-	3-	-	- T	
Extensibility, mm	194	216	181	228	-	205	187	-	-	- /	-	1//-
ALVEOGRAM				44								//
Strength (S), cm2	47.1	49.7	41.4	44.8		39.1	35.8				1110	
Stability (P), mm			87	86	-	66	78	_		-	7 - 1	- MAN / 1
	98	91	0/									
Distensibility (L), mm	98	91	_		- T	132	106	-	-	-	1 - 1	- 1
	98 98 1.00	91 106 0.86	100	108	-	132 0.50	106 0.74	-	-	- 111	-	-
Distensibility (L), mm Configuration ratio (P/L)	98	106	100	108				-	-			
Configuration ratio (P/L) MIXOGRAM	98	106 0.86	100 0.87	108 0.80		0.50	0.74		-	-	- 2	
Configuration ratio (P/L)	98	106	100	108				-	- 1	-		
Configuration ratio (P/L) MIXOGRAM Peak time, min	98	106 0.86	100 0.87	108 0.80		0.50	0.74		-	4	1-1	
Configuration ratio (P/L) MIXOGRAM	98	106 0.86	100 0.87	108 0.80		0.50	0.74		-	4	1-1	

MIXOGRAM

24 30

FARINOGRAM

24 30

EXTENSOGRAM

24 30

ALVEOGRAM

SOUTH AFRICAN

OTHER SUMMER RAINFALL AND IRRIGATION WHEAT Mpumalanga

PRODUCTION REGION	(32) Mpuma Wester	ılanga n Regior	1				(33) Mpuma Norther	langa n Regio	n			
Intake silos	Argent Dryden						Driefont Lydenbi					
	Endicot	t					Marble	•				
	Elof	li					Middelb	0				
	Hawerk Kendal	пр					Stoffelb Pan	erg				
	Ogies						Arnot					
							Wonder	fontein				
WHEAT												
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	11.9		11.2	12.9		0.70	11.1		8.6	13.0		1.26
Falling number, sec	321 40.2		243 36.5	390		3 00	372 41.4		227	493		97.21
1000 Kernel mass (13% mb), g Hectolitre mass (dirty), kg/hl	78.9		76.7	44.4 80.0		2.99 1.21	78.4		36.9 75.9	45.9 80.2		1.42
Screenings (<1.8mm), %	1.17		0.50	2.20		0.53	1.36		0.21	2.32		0.69
Total damaged kernels, %	0.62		0.24	1.14		0.32	0.67		0.00	1.88		0.56
Number of samples				7					1	0		
				9								
CULTIVARS		991	835	41	1			CDN	826	25	5.6	
cultivars			1 826	28					ızi		3.5	
with highest %			806	11					876		7.9	
occurrence			876	10					835		5.2	
		CRN	826	9.	.6			Bavi	aans	4	.2	
Number of samples				7					1	0		
MIXOGRAM (Quadromat)												
mixed than (quadromat)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	3.0		2.4	3.7		0.42	2.9		2.5	3.8		0.39
Peak time, min Tail height (6min), mm	1		2.4	3.7 52					2.5 35	3.8 53		
Peak time, min	3.0		2.4	3.7		0.42	2.9		2.5 35	3.8		0.39
Peak time, min Tail height (6min), mm	3.0	B2	2.4	3.7 52	UT	0.42	2.9	B2	2.5 35	3.8 53	UT	0.39
Peak time, min Tail height (6min), mm	3.0		2.4	3.7 52 7		1.81	2.9		2.5 35	3.8 53		0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	3.0 49 B1	B2	2.4 47 B3	3.7 52 7	UT	0.42 1.81	2.9 46 B1	B2	2.5 35 1	3.8 53 0	UT	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	3.0 49 B1 77.0	B2 76.7	2.4 47 B3	3.7 52 7	UT	0.42 1.81	2.9 46 B1 76.6	B2 76.6	2.5 35 1 B3 76.5	3.8 53 0	UT 76.1	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	3.0 49 B1	B2	2.4 47 B3	3.7 52 7	UT -	0.42 1.81	2.9 46 B1	B2	2.5 35 1	3.8 53 0 B4	UT	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	3.0 49 B1 77.0	B2 76.7	2.4 47 B3	3.7 52 7	UT -	0.42 1.81	2.9 46 B1 76.6	B2 76.6	2.5 35 1 83 76.5	3.8 53 0 B4	UT 76.1	0.39 4.88 COW -
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	3.0 49 B1 77.0 11.8 -1.2	B2 76.7 10.6 -1.5	2.4 47 B3 -	3.7 52 7 B4	UT	0.42 1.81 COW	2.9 46 B1 76.6 11.7 -1.6	B2 76.6 10.5 -1.8	2.5 35 1 83 76.5 9.4 -1.8	3.8 53 0 B4	7.6 7.6	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	3.0 49 B1 77.0 11.8 -1.2	B2 76.7 10.6 -1.5 59.7	2.4 47 B3 -	3.7 52 7 B4	- -	0.42 1.81 COW	2.9 46 B1 76.6 11.7 -1.6	B2 76.6 10.5 -1.8	2.5 35 1 83 76.5 9.4 -1.8	3.8 53 0 B4	7.6 -2.5	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5	10.6 -1.5 59.7 4.0	2.4 47 B3 -	3.7 52 7 B4	UT	0.42 1.81 COW	2.9 46 B1 76.6 11.7 -1.6	B2 76.6 10.5 -1.8 60.4 3.2	2.5 35 1 83 76.5 9.4 -1.8	3.8 53 0 B4	7.6 -2.5 57.4	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	3.0 49 B1 77.0 11.8 -1.2	B2 76.7 10.6 -1.5 59.7	2.4 47 B3 -	3.7 52 7 B4	- -	0.42 1.81 COW	2.9 46 B1 76.6 11.7 -1.6	B2 76.6 10.5 -1.8	2.5 35 1 83 76.5 9.4 -1.8	3.8 53 60 B4	7.6 -2.5	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8	10.6 -1.5 59.7 4.0 7.1	2.4 47 B3 -	3.7 52 7 B4		0.42 1.81 COW -	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7	B2 76.6 10.5 -1.8 60.4 3.2 7.4	2.5 35 1 83 76.5 9.4 -1.8 58.8 1.8 5.6	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43	10.6 -1.5 59.7 4.0 7.1 54	2.4 47 B3	3.7 52 7 B4	- - - -	0.42 1.81 COW -	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7 40	82 76.6 10.5 -1.8 60.4 3.2 7.4 37	2.5 35 1 B3 76.5 9.4 -1.8 58.8 1.8 5.6 50	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43	10.6 -1.5 59.7 4.0 7.1 54	2.4 47 B3 	3.7 52 7 B4	- - - - -	0.42 1.81 COW -	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7 40	B2 76.6 10.5 -1.8 60.4 3.2 7.4 37	2.5 35 1 B3 76.5 9.4 -1.8 58.8 1.8 5.6 50	3.8 53 70 B4	7.6 -2.5 57.4 1.3 3.9 70	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43	10.6 -1.5 59.7 4.0 7.1 54	2.4 47 B3	3.7 52 7 B4	- - - -	0.42 1.81 COW	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7 40	82 76.6 10.5 -1.8 60.4 3.2 7.4 37	2.5 35 1 B3 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43	10.6 -1.5 59.7 4.0 7.1 54	2.4 47 B3 	3.7 52 7 B4		0.42 1.81 COW -	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7 40	B2 76.6 10.5 -1.8 60.4 3.2 7.4 37	2.5 35 1 B3 76.5 9.4 -1.8 58.8 1.8 5.6 50	3.8 53 70 B4	7.6 -2.5 57.4 1.3 3.9 70	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209	59.7 4.0 7.1 54 107 365 202	2.4 47 B3	3.7 52 7 B4		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177	2.5 35 1 83 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165	3.8 53 70 B4	7.6 -2.5 57.4 1.3 3.9 70 39 245 109	0.39 4.88 COW
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209	59.7 4.0 7.1 54 107 365 202	2.4 47 B3	3.7 52 7 B4		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177	2.5 35 183 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165	3.8 53 70 B4	76.1 7.6 -2.5 57.4 1.3 3.9 70 39 245 109	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209	59.7 4.0 7.1 54 107 365 202	2.4 47 B3	3.7 52 7 B4		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67	3.8 53 70 B4	76.1 7.6 -2.5 57.4 1.3 3.9 70 39 245 109	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135	59.7 4.0 7.1 54 107 365 202 39.3 72 127	2.4 47 B3	3.7 52 7		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177 36.5 77	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101	3.8 53 10 B4	76.1 7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209	59.7 4.0 7.1 54 107 365 202	2.4 47 B3	3.7 52 7 B4		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67	3.8 53 70 B4	76.1 7.6 -2.5 57.4 1.3 3.9 70 39 245 109	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135 0.56	59.7 4.0 7.1 54 107 365 202 39.3 72 127 0.56	2.4 47 B3	3.7 52 7		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196 37.8 81 104 0.78	85 335 177 36.5 77 109 0.71	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101 0.66	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51 1.42	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135	59.7 4.0 7.1 54 107 365 202 39.3 72 127	2.4 47 B3	3.7 52 7		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177 36.5 77	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101	3.8 53 10 B4	76.1 7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135 0.56	59.7 4.0 7.1 54 107 365 202 39.3 72 127 0.56	2.4 47 B3	3.7 52 7 B4		0.42 1.81	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196 37.8 81 104 0.78	85 335 177 36.5 77 109 0.71	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101 0.66	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51 1.42	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135 0.56	10.6 -1.5 59.7 4.0 7.1 54 107 365 202 39.3 72 127 0.56	2.4 47 B3	3.7 52 7 B4		0.42 1.81	2.9 46 B1 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196 37.8 81 104 0.78	82 76.6 10.5 -1.8 60.4 3.2 7.4 37 85 335 177 36.5 77 109 0.71	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101 0.66	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51 1.42	0.39 4.88
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.0 49 B1 77.0 11.8 -1.2 61.5 4.5 7.8 43 107 360 209 42.7 76 135 0.56	59.7 4.0 7.1 54 107 365 202 39.3 72 127 0.56	2.4 47 B3	3.7 52 7 B4		0.42 1.81 COW	2.9 46 81 76.6 11.7 -1.6 62.6 4.8 7.7 40 94 335 196 37.8 81 104 0.78	85 335 177 36.5 77 109 0.71	2.5 35 76.5 9.4 -1.8 58.8 1.8 5.6 50 77 310 165 30.0 67 101 0.66	3.8 53 10 B4	7.6 -2.5 57.4 1.3 3.9 70 39 245 109 19.1 72 51 1.42	0.39 4.88

MIXOGRAM

33

32

FARINOGRAM

32

EXTENSOGRAM

32

ALVEOGRAM

SOUTH AFRICAN

OTHER SUMMER RAINFALL AND IRRIGATION WHEAT Gauteng and Limpopo Provinces

	(34)						(35)					
PRODUCTION REGION	Gauten	g					Limpop	00				
Intake silos	Bloekor	nspruit					Alma					
Titake 31103		orstspruit					Crecy					
	Glenroy						Immerp	an				
	Goeie F						Lehau					
	Kaalfon						Naboon					
	Middelv Nigel	iei					Northan Nutfield					
	Oberho	lzer					Nylstroc					
	Raaths						Pienaar					
							Pietersb	ourg				
							Potgiete					
							Roedtar					
							Settlers Tzaneei					
							Vaalwat					
							Warmba	ad				
WHEAT	70.0	-										
Protein (12% mb), %	11.9		min 10.0	max 13.5		o.88	11.3		min 8.2	max 12.8		stdev 1.18
Falling number, sec	346		181	468		76.95	468		322	556		67.12
1000 Kernel mass (13% mb), g	37.7		31.6	45.9		3.64	40.6		36.7	46.0		2.89
Hectolitre mass (dirty), kg/hl	77.2		72.7	81.5		2.19	79.3		72.2	82.4		3.13
Screenings (<1.8mm), %	1.23		0.34	2.10		0.65	1.40		0.78	2.24		0.48
Total damaged kernels, %	0.76		0.24	2.28		0.49	1.58		0.00	10.46	3	2.63
Number of samples			1	18					1	17		
CULTIVARS		0.07						0.07		0.00		
			835		7.2				835 uzi	38		
cultivars with highest %			1 826 ants		3.6				876	8.		
occurrence			876		.3				ants	8.		
Cocurrence			iega		.6				iega	7.		
Number of samples				18						17		
MIXOGRAM (Quadromat)												
	ave		min	max	:	stdev	ave		min	max		stdev
Peak time, min Tail height (6min), mm	3.0		2.1	4.3		0.66 4.55	3.1		2.3	4.3 52		1.87
Number of samples	40			18		4.00	40			17		1.07
				- D4		0014				. D4		1 0014/
BÜHLER EXTRACTION, %	B1 76.0	B2 76.6	B3 77.1	B4 74.1	UT 75.5	COW	B1 76.0	B2 77.5	B3 75.9	B4 75.6	UT -	76.0
FLOUD		1//14						1	11/15			
FLOUR Protein (12% mb), %	11.8	10.9	10.0	12.1	10.8		11.6	10.4	9.9	8.9		11.2
Colour, KJ	-1.1	-1.7	-1.5	-1.0	-0.6	-	-2.0	-2.1	-2.3	-2.0		1.1
FARINOGRAM			4									
Water absorption (14% mb), %	61.8	61.3	58.5	61.6	60.4		62.4	61.8	60.7	62.6	-	58.9
Development time, min	4.9	3.8	3.5	3.5	2.2		5.7	4.3	3.2	1.7	- 1	2.5
Stability, min	7.9	5.9	5.8	6.2	6.7	- 1	9.6	6.7	6.6	6.0		5.8
Mixing tolerance index, BU	40	53	64	52	48	-	37	52	47	42	-	47
			1111							7	N B	
EXTENSOGRAM (45 min pull)										87	-	104
Area, cm2	95	79	81	88	90	-	113	79	74			_
Area, cm2 Maximum height, BU	360	290	305	305	375	-	390	315	315	355	A - 1	320
Area, cm2								_				320 228
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	360 187	290 180	305 183	305 204	375 170	-	390 194	315 170	315 164	355 185	- 1	228
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	360 187 42.8	290 180 33.0	305 183 30.0	305 204 37.5	375 170 41.4	-	390 194 47.2	315 170 37.5	315 164 35.5	355 185 36.5	-	33.3
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	360 187 42.8 85	290 180 33.0 74	305 183 30.0 61	305 204 37.5 76	375 170 41.4 95	-	390 194 47.2 95	315 170 37.5 87	315 164 35.5 82	355 185 36.5 114		33.3 53
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	360 187 42.8 85 110	290 180 33.0 74 107	305 183 30.0 61 115	305 204 37.5 76 113	375 170 41.4 95 83	-	390 194 47.2 95 106	315 170 37.5 87 93	315 164 35.5 82 94	355 185 36.5 114 59	-	33.3 53 146
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	360 187 42.8 85	290 180 33.0 74	305 183 30.0 61	305 204 37.5 76	375 170 41.4 95	-	390 194 47.2 95	315 170 37.5 87	315 164 35.5 82	355 185 36.5 114		33.3 53
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	360 187 42.8 85 110 0.77	290 180 33.0 74 107 0.69	30.5 183 30.0 61 115 0.53	305 204 37.5 76 113 0.67	375 170 41.4 95 83 1.14	-	390 194 47.2 95 106 0.89	315 170 37.5 87 93 0.94	315 164 35.5 82 94 0.88	355 185 36.5 114 59 1.92		33.3 53 146 0.36
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	360 187 42.8 85 110	290 180 33.0 74 107	305 183 30.0 61 115	305 204 37.5 76 113	375 170 41.4 95 83	-	390 194 47.2 95 106	315 170 37.5 87 93	315 164 35.5 82 94	355 185 36.5 114 59	-	33.3 53 146
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	360 187 42.8 85 110 0.77	33.0 74 107 0.69	30.5 183 30.0 61 115 0.53	305 204 37.5 76 113 0.67	375 170 41.4 95 83 1.14	-	390 194 47.2 95 106 0.89	37.5 87 93 0.94	315 164 35.5 82 94 0.88	355 185 36.5 114 59 1.92		33.3 53 146 0.36
Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	360 187 42.8 85 110 0.77	290 180 33.0 74 107 0.69	30.5 183 30.0 61 115 0.53	305 204 37.5 76 113 0.67	375 170 41.4 95 83 1.14	-	390 194 47.2 95 106 0.89	315 170 37.5 87 93 0.94	315 164 35.5 82 94 0.88	355 185 36.5 114 59 1.92		33.3 53 146 0.36

MIXOGRAM

35

FARINOGRAM

34 35

34

EXTENSOGRAM

34 35

ALVEOGRAM

SOUTH AFRICAN

IRRIGATION WHEAT KwaZulu-Natal Province

PRODI	ICTION	REGION	

(36) | KwaZulu-Natal

Intake silos

Bergville Bloedrivier Dannhauser Dundee Mizpah New Amalfi Paulpietersburg Vryheid Winterton

WHEAT	90.0	LUCIO.				
	ave		min	max	: :	stdev
Protein (12% mb), %	12.5		11.3	13.5		0.82
Falling number, sec	367		306	433		50.92
1000 Kernel mass (13% mb), g	39.0		37.7	40.6		1.10
Hectolitre mass (dirty), kg/hl	79.2		75.9	80.5		1.88
Screenings (<1.8mm), %	1.09		0.56	1.78		0.44
Total damaged kernels, %	0.90)	0.24	1.72		0.66
Number of samples				5		
CHITNARO						
CULTIVARS		227	835	30	3.2	
cultivars						
			806		2.6	
with highest % occurrence			825		.0	
occurrence			nds		.4	
Number of samples		Lia		5	.+	
Number of Samples						
MIXOGRAM (Quadromat)						
	ave		min	max	:	stdev
Peak time, min	2.9		2.6	3.3		0.29
Tail height (6min), mm	46		43	50		2.70
Number of samples				5		
DÜLL ED EYTDACTION %	B1	B2	B3	B4	UT	cow
BÜHLER EXTRACTION, %	77.1	78.2	76.9	1	-	
FLOUR				W. 114	2.00	
Protein (12% mb), %	12.0	10.7	11.7	-		
Colour, KJ	-1.2	-2.2	-0.5	-	0 -	-
			4	W-1		
FARINOGRAM	200				133	7779
Water absorption (14% mb), %	61.0	60.0	61.4	-	-	-
Development time, min	5.5	4.7	4.3	-	-	-
Stability, min	7.3	8.9	6.6	-	-	-
Mixing tolerance index, BU	49	35	53	-	-	-
EVERNOODAM (45 viv. II)						
EXTENSOGRAM (45 min pull)	112	0.0	75			
Area, cm2	_	86	75	-		-
Maximum height, BU Extensibility, mm	355	280	295 174	-	-	-
Extensibility, min	222	220	174	-	-	-
ALVEOGRAM	100					- 255
Strength (S), cm2	36.9	43.7	35.2			-
Stability (P), mm	68	79	78	-	-	-
Distensibility (L), mm	128	124	103	-	-	-
Configuration ratio (P/L)	0.53	0.64	0.75		7-	-
	Tank.					
MIXOGRAM	152		377			100
Peak time, min	2.7	3.0	2.5	-	111-11	-
		Page 1				
100g BAKING TEST						1 48
Loaf volume, cm3	980	910	920		. 10-11	-
Evaluation	0	0	0	-	-	-

MIXOGRAM

36

FARINOGRAM

36

EXTENSOGRAM

36

ALVEOGRAM

WEIGHTED AVERAGE RESULTS FOR THE LAST THREE SEASONS

		2008	8/2009	9			200	7/2008	3			200	6/2007	7	
Region	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	п	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n
1	11.2	435	79.7	2.7	4	11.5	397	77.4	2.7	6	-	-	-	-	-
2	10.3	390	76.7	3.0	24	10.6	374	75.0	3.2	23	11.3	393	77.2	2.6	18
3	10.5	395	77.7	2.7	71	10.4	373	77.8	3.0	78	11.1	362	77.7	2.5	65
4	10.3	377	79.4	2.7	14	10.5	366	78.1	3.0	35	10.4	353	78.9	2.7	17
5	11.7	304	77.6	2.4	19	11.0	370	78.7	2.5	15	11.3	366	76.3	2.5	27
6	11.8	339	78.0	2.5	34	10.5	362	78.5	2.8	34	11.1	359	76.4	2.9	33
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8	13.1	397	76.4	2.9	4	-	-	-	-	-	-	-	-	-	-
9		10-10	-74	No.			-	-	-	-		-	-	-	-
10	11.6	430	79.0	2.6	23	11.0	413	79.4	2.5	17	11.9	387	80.8	2.2	27
11	11.8	446	77.5	2.8	24	11.3	388	78.2	2.4	9	11.2	389	77.1	2.7	14
12	13.5	446	75.8	3.0	7	11.8	363	74.9	2.8	3	11.1	356	81.3	2.5	4
13	- 1	-	-		-	-	-	-	-	-	-	-		-	-
14	- 1	-	-	-	-	12.1	381	74.7	3.0	6	12.4	346	80.0	2.4	3
15	12.9	467	76.0	2.6	9	11.8	400	77.6	3.0	10	12.0	300	79.7	2.9	13
16		-	-	-	-	-	- /		///-	-	12.4	329	78.7	2.5	1
17	13.8	344	74.1	2.8	6	11.8	399	77.1	2.9	3	11.4	365	76.0	2.7	4
18	12.3	329	77.6	2.7	3	11.1	365	77.3	2.8	6	-	-		-	- 1
19	12.2	396	76.2	2.6	13	11.4	385	77.6	2.7	10	11.8	312	78.8	2.4	11
20	11.6	411	76.4	3.3	25	11.2	360	77.4	2.7	13	10.7	360	78.7	3.0	25
21	11.5	426	77.8	2.8	2	12.0	354	78.4	3.6	8	12.2	305	77.5	2.9	12
22	14.1	320	76.8	2.9	10	12.1	383	77.8	2.7	6	13.3	345	77.3	2.6	3
23	12.9	379	77.2	2.9	23	11.5	367	77.7	3.0	25	11.8	322	79.6	2.9	17
24	13.4	347	76.1	3.3	17	11.6	344	77.7	2.9	26	11.7	327	79.0	2.9	27
25	13.5	314	77.6	3.4	31	10.6	325	78.1	3.5	32	10.8	335	78.4	3.3	39
26	14.0	320	77.2	3.6	25	11.1	312	79.2	3.6	26	12.2	320	79.5	3.0	18
27	12.8	370	77.9	3.4	3	11.1	298	80.2	3.2	10	12.7	346	79.8	2.7	8
28	13.2	376	78.5	3.2	29	10.8	337	80.5	3.3	32	12.0	340	78.4	3.0	33
29	10.1	-	-		-	12.6	388	78.1	2.3	3	-	-	1-80	-	
30	12.6	438	80.0	2.3	3	11.3	428	78.2	2.3	5	11.6	390	82.7	2.0	4
31		-		-	-	- 3	-	-	-	-	-	-	1-1	1	-
32	11.9	321	78.9	3.0	7	12.3	344	77.8	2.8	3	12.0	319	79.1	2.7	7
33	11.1	372	78.4	2.9	10	-	-	-	-	-	11.3	357	78.8	2.9	11
34	11.9	346	77.2	3.0	18	11.5	378	78.0	2.6	11	11.8	375	77.9	2.6	17
35	11.3	468	79.3	3.1	17	11.4	402	77.4	2.7	10	11.6	352	79.4	2.9	22
36	12.5	367	79.2	2.9	5	12.8	292	78.6	2.9	15	= -	-	01-11	-	5-1
Ave.	12.0	378	77.6	2.9	480	11.0	360	78.1	3.0	480	11.4	351	78.4	2.8	480

BREAD WHEAT GRADING TABLE 2008/2009

		Minimum					Maximum	percentage per	missible devi	ation (m/m)		
		wiinimum		А	В	С	D	E	F	G	н	1	J
Grade	Hectolitre mass, kg	Falling number, seconds	Protein content, %	Heavily frost damaged kernels	Field fungi	Storage fungi	Screenings	Other grain and unthreshed ears	Gravel, stones, turf and glass	Foreign matter plus F	Heat damaged kernels	Damaged kernels plus H	Combined deviations (D+E+G+I)
Grade 1	77	220	12	5	2	0.5	3	1	0.5	1	0.5	2	5
Grade 2	76	220	11	5	2	0.5	3	1	0.5	1	0.5	2	5
Grade 3	74	220	10	5	2	0.5	3	1	0.5	1	0.5	2	5
Grade 4	72	200	9	5	2	0.5	3	1	0.5	1	0.5	2	5
Utility grade	70	150	8	10	2	0.5	10	4	0.5	3	0.5	5	10
Other Wheat	<70	<150	<8	>10	>2	>0.5	>10	>4	>0.5	>3	>0.5	>5	>10
Minimum size of working samples	1 kg	300 g clean	Apparatus instructions	25 g sifted	25 g sifted	25 g sifted	500 g unsifted	50 g sifted	100 g sifted	100 g sifted	100 g sifted	25 g sifted	-

MYCOTOXIN RESULTS FOR THE 2008/2009 SEASON

		Aflatoxin	Deoxynivalenol	Ochratoxin		
Region	Class and Grade	ppb	ppm	ppb		
		LOD < 2.0	LOD < 0.25	LOD = 1.0		
1	B2	2	0	0		
2	В3	2	0	0		
3	В3	2	0	0		
3	B4	2	0	0		
4	В3	2	0	0		
5	B1	0	0	0		
6	B2	0	0	0		
8	В3	2	0.9	0		
10	B2	2	0.5	0		
11	UT	3	0.45	0		
12	COW	0	0	0		
15	B2	0	0	0		
17	UT	0	0	1		
18	B2	3	0.45	0		
19	B2	0	2.4	0		
20	B2	3	0.75	0		
21	В3	0	1.3	0		
22	B1	0	0.35	0		
23	B2	3	0	0		
24	B1	2	0	0		
25	B1	0	0	0		
26	B1	2	0	0		
27	B1	0	0	0		
28	B1	3	0.9	0		
30	B1	0	0.7	0		
32	B2	2	0.55	0		
33	B2	0	0.65	0		
34	B1	0	0.9	0		
35	B2	0	0.25	0		
36	B1	2	3.0	0		
Average 2008/2009	[max. value]	1.23 [3]	0.47 [3.0]	0.03 [1]		
Average 2007/2008	[max. value]	0.33 [5.00]	1.36 [2.70]	0.33 [2.80]		
Average 2006/2007	lmax. valuel	0.00 [<5]	1.46 [2.40]	0.17 [1.40]		

Please note:

Limit of detection (LOD) means the lowest level that can be detected accurately by the ROSA-M Reader. All results < LOD are reported as 0.

RSA WHEAT CROP QUALITY SUMMARY

RSA Crop Quality 2006/2007 and 2008/2009 Seasons

Country of origin	R	SA C	rop A	vera	ge 20	006/2	2007	R	SA C	rop A	Avera	ge 2	008/2	2009
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	135	130	104	42	64	5	480	126	121	101	49	67	16	480
WHEAT														
GRADING														
Protein (12% mb), %	12.73	11.48	10.73	9.84	10.93	11.00	11.45	13.27	12.00	11.25	10.69	11.54	12.69	12.00
Moisture, %	10.5	10.4	10.75	12.6	10.55	10.8	10.7	11.5	11.1	11.0	10.03	11.0	11.6	11.2
Falling number, sec	347	362	357	332	346	260	351	364	395	382	346	393	364	378
1000 Kernel mass (13% mb), g	36.4	37.8	37.9	37.9	36.4	35.7	37.2	37.5	38.5	39.1	40.6	37.4	36.6	38.3
HIm (dirty), kg/hl	79.3	78.9	77.7	77.8	77.0	75.8	78.4	78.6	77.8	77.2	77.4	76.4	76.0	77.6
Screenings (<1,8mm), %	1.44	1.47	1.72	1.52	3.45	3.39	1.81	1.36	1.52	1.74	1.33	2.77	2.76	1.72
Gravel, stones, turf and glass, %	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.13	0.01
Foreign matter, %	0.07	0.08	0.09	0.10	0.10	0.08	0.08	0.09	0.09	0.08	0.10	0.17	0.29	0.11
Other grain & unthreshed ears, %	0.26	0.29	0.35	0.36	0.55	0.22	0.33	0.20	0.24	0.29	0.26	0.34	0.32	0.26
Heat damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.07	0.06	0.05	0.04	0.02	0.02	0.05	0.12	0.07	0.04	0.05	0.06	0.04	0.07
Insect damaged kernels, %	0.07	0.00	0.03	0.04	0.66	4.14	0.03	0.12	0.07	0.04	0.03	1.13	4.02	0.62
Heavily frost damaged kernels, %	0.39	0.43	0.03	0.00	0.00	0.30	0.53	0.27	0.42	0.46	0.02	0.01	0.00	0.02
Sprouted kernels, %	0.05	0.02	0.05	0.00	0.01	2.12	0.03	0.10	0.00	0.00	0.02	0.01	1.01	0.00
Total damaged kernels, %	0.03	0.00	0.64	0.66	0.13	6.28	0.66	0.10	0.09	0.11	0.75	1.40	5.07	0.13
	_	2.40	2.80	2.64	4.94			2.14	2.42	2.71	2.27	4.49	8.44	
Combined deviations, % Field fungi, %	0.08	0.12	0.11	0.14	0.19	9.96	2.89 0.12	0.08	0.12	0.09	0.04	0.12	0.23	2.88 0.10
	+	0.12	0.11	0.14	0.19			0.08	0.12	0.09	0.04	0.12	0.23	0.10
Storage fungi, %	0.01	0.01	0.03	0.04		0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.04	0.00
Ergot, %	-				0.00									
Noxious seeds (Crotolaria sp., Datura sp.,)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)		-	0	0		0	0			0			0	0
Live insects	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	26	25	21	11	15	2	100	22	23	22	12	16	5	100
BÜHLER EXTRACTION, %	75.2	75.4	75.6	74.7	74.6	72.3	75.1	76.0	76.1	75.7	75.2	75.2	75.1	75.7
FLOUR							1							
Colour, KJ	-1.1	_13	-1.4	-1.5	-0.8	-1.0	-1.2	_1 3	-1.7	-17	-1.6	-1.5	-0.9	-1.5
Colour, No	-1.1	-1.5	-1.4	-1.5	-0.0	-1.0	-1.2	-1.5	-1.7	-1.7	-1.0	-1.5	-0.9	-1.5
100g BAKING TEST														
Baking water absorption, %	61.7	60.3	59.6	58.7	59.8	60.5	60.3	61.9	60.8	60.0	60.0	60.3	60.1	60.7
Loaf volume, cm³	893	824	794	718	776	788	816	956	909	870	849	892	926	902
Evaluation	1	1	1	2	1	2	1	1	0	0	1	0	0	0
FARINOGRAM									7/11	The L	J. C.			
Water absorption, %	63.0	61.7	60.5	60.0	60.5	61.5	61.4	62.2	61.1	60.4	60.9	60.7	60.6	61.1
Development time, min	4.6	3.7	2.9	2.1	2.7	2.4	3.4	5.0	4.1	3.6	3.1	3.8	3.7	4.0
Stability, mm	7.2	6.3	5.7	4.5	5.6	6.2	6.1	8.6	7.7	7.3	6.8	7.4	7.4	7.6
Mixing tolerance index, BU	45	50	52	62	53	47	51	42	42	44	46	45	43	43
wining dictance index, DO	+5] 30	52	02	00	7/	31	74	74	77	70	70	73	45
								1						

RSA Crop Quality of 2006/2007 and 2008/2009 Seasons

Country of origin	R	SA C	rop A	Avera	ge 2	006/2	2007	R	SA C	rop A	vera	ge 2	008/2	009
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	26	25	21	11	15	2	100	22	23	22	12	16	5	100
ALVEOGRAM														
Strength (S), cm ²	42.3	37.5	33.7	32.0	33.9	38.0	36.8	42.4	38.0	35.6	35.8	37.2	36.6	38.0
Stability (P), mm	88	87	82	87	80	95	85	85	83	82	87	82	78	83
Distensibility (L), mm	110	100	95	80	99	93	99	111	102	95	88	101	114	101
P/L	0.82	0.93	0.92	1.25	0.90	1.20	0.93	0.80	0.86	0.93	1.10	0.94	0.91	0.90
EXTENSOGRAM														
Strength, cm ²	94	80	75	72	80	98	82	101	89	83	85	90	89	90
Max. height, BU	331	323	315	328	327	383	326	348	330	330	337	340	325	336
Extensibility, mm	195	173	164	152	168	175	174	201	184	172	174	179	187	183
MIXOGRAM			198	and the										
Peak time, min	2.4	2.5	2.6	2.9	2.7	2.9	2.6	2.5	2.6	2.7	2.7	2.7	2.8	2.6
Absorption, %	62.1	60.6	59.8	59.0	60.0	60.2	60.5	62.3	61.0	60.6	60.6	61.1	61.4	61.2
								K						
MYCOTOXINS				0.16		App.				T g				
Aflatoxin, ppb [max.value]				0.00 [<	:5]					199	1.23 [3.	00]		725
Deoxynivalenol, ppm [max. value]				1.46 [2.	40]						0.47 [3.	00]		
Ochratoxin A, ppb [max. value]				0.17 [1.	40]			W			0.03 [1.	00]		
No. of samples			10	30				DY 1	MES		30			

RSA WHEAT CROP QUALITY SUMMARY

RSA Crop Quality 2007/2008 and 2008/2009 Seasons

Country of origin	R	SA C	rop A	vera	ge 2	007/2	2008	R	SA C	rop A	Avera	ge 2	008/2	2009
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	64	137	131	70	54	24	480	126	121	101	49	67	16	480
WHEAT												,[,		
GRADING														
Protein (12% mb), %	12.48	11.42	10.59	9.58	10.99	11.66	11.03	13.27	12.00	11.25	10.69	11.54	12.69	12.00
Moisture, %	11.6	11.4	12.0	11.1	11.4	11.8	11.6	11.5	11.1	11.0	10.9	11.0	11.6	11.2
Falling number, sec	369	368	359	351	364	323	360	364	395	382	346	393	364	378
1000 Kernel mass (13% mb), g	38.9	38.7	39.1	39.7	36.4	38.1	38.7	37.5	38.5	39.1	40.6	37.4	36.6	38.3
Hlm (dirty), kg/hl	78.9	78.7	78.0	78.5	76.2	75.5	78.1	78.6	77.8	77.2	77.4	76.4	76.0	77.6
Screenings (<1,8mm), %	1.42	1.36	1.33	1.16	3.01	3.02	1.60	1.36	1.52	1.74	1.33	2.77	2.76	1.72
Gravel, stones, turf and glass, %	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.13	0.01
Foreign matter, %	0.05	0.05	0.05	0.07	0.08	0.19	0.06	0.09	0.09	0.08	0.10	0.17	0.29	0.11
Other grain & unthreshed ears, %	0.23	0.25	0.30	0.26	0.54	0.32	0.30	0.20	0.24	0.29	0.26	0.34	0.32	0.26
Heat damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.12	0.11	0.06	0.06	0.16	0.14	0.10	0.12	0.07	0.04	0.05	0.06	0.04	0.07
Insect damaged kernels, %	0.24	0.17	0.15	0.16	0.75	2.08	0.33	0.27	0.42	0.46	0.54	1.13	4.02	0.62
Heavily frost damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00
Sprouted kernels, %	0.23	0.19	0.15	0.14	0.17	1.08	0.22	0.10	0.09	0.11	0.10	0.14	1.01	0.13
Total damaged kernels, %	0.59	0.47	0.36	0.35	1.08	3.30	0.65	0.49	0.58	0.62	0.75	1.40	5.07	0.85
Combined deviations, %	2.30	2.13	2.04	1.85	4.71	6.85	2.61	2.14	2.42	2.71	2.27	4.49	8.44	2.88
Field fungi, %	0.14	0.10	0.09	0.06	0.18	0.14	0.11	0.08	0.12	0.09	0.04	0.12	0.23	0.10
Storage fungi, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.04	0.01
Ergot, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Live insects	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	A	B1	B2	В3	B4	UT	cow	A.,
No. of samples	23	26	18	14	13	6	Average 100	22	23	22	12	16	5	Average 100
BÜHLER EXTRACTION, %	75.7	76.0	75.7	74.9	75.1	75.4	75.6	76.0	76.1	75.7	75.2	75.2	75.1	75.7
	75.7	70.0	75.7	74.5	75.1	75.4	75.0	70.0	70.1	75.7	75.2	75.2	75.1	75.7
FLOUR														
Colour, KJ	-1.7	-1.9	-2.1	-2.4	-1.7	-0.8	-1.9	-1.3	-1.7	-1.7	-1.6	-1.5	-0.9	-1.5
100g BAKING TEST														
Baking water absorption, %	61.5	60.3	59.4	57.7	59.6	61.2	60.0	61.9	60.8	60.0	60.0	60.3	60.1	60.7
Loaf volume, cm³	892	857	802	704	800	873	827	956	909	870	849	892	926	902
Evaluation	1	1	1	2	1	1	1	1	0	0	1	0	0	0
FARINOGRAM													19/	
Water absorption, %	62.3	61.0	60.2	59.3	59.8	61.0	60.8	62.2	61.1	60.4	60.9	60.7	60.6	61.1
Development time, min	_	3.8						5.0			3.1			
Development time, min Stability, mm Mixing tolerance index, BU	9.0	7.6 41	2.9 6.6 44	2.0 4.5 58	3.0 6.4 46	4.4 7.9 43	3.5 7.2 44	5.0 8.6 42	4.1 7.7 42	3.6 7.3 44	3.1 6.8 46	3.8 7.4 45	3.7 7.4 43	4.0 7.6 43

RSA Crop Quality of 2007/2008 and 2008/2009 Seasons

Country of origin	R	SA C	rop A	vera	ge 2	007/2	2008	R	SA C	rop A	Avera	ge 2	008/2	2009
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	23	26	18	14	13	6	100	22	23	22	12	16	5	100
ALVEOGRAM														
Strength (S), cm²	47.9	42.8	39.8	33.0	39.5	46.9	41.9	42.4	38.0	35.6	35.8	37.2	36.6	38.0
Stability (P), mm	92	86	89	96	86	83	89	85	83	82	87	82	78	83
Distensibility (L), mm	118	114	101	75	101	127	106	111	102	95	88	101	114	101
P/L	0.81	0.78	0.98	1.54	0.93	0.67	0.94	0.80	0.86	0.93	1.10	0.94	0.91	0.90
EXTENSOGRAM														
Strength, cm²	106	98	93	77	97	114	97	101	89	83	85	90	89	90
Max. height, BU	377	371	384	371	388	392	378	348	330	330	337	340	325	336
Extensibility, mm	195	184	172	142	170	200	178	201	184	172	174	179	187	183
MIXOGRAM	- iii.	Th.	136				Maja l							
Peak time, min	2.6	2.6	2.9	3.0	2.8	2.8	2.8	2.5	2.6	2.7	2.7	2.7	2.8	2.6
Absorption, %	62.4	61.0	60.0	58.7	60.2	61.8	60.8	62.3	61.0	60.6	60.6	61.1	61.4	61.2
								K						
MYCOTOXINS							100							
Aflatoxin, ppb [max.value]				0.33 [5.							1.23 [3.			1111
Deoxynivalenol, ppm [max. value]				1.36 [2.							0.47 [3.			17.58
Ochratoxin A, ppb [max. value]	FAR			0.33 [2.	80]			164			0.03 [1.	00]		
No. of samples			101	30					MAR		30			

RSA WHEAT PRODUCTION AREAS

WHEAT SEED SOLD BY COMMERCIAL GRAIN SILO OWNERS TO WHEAT PRODUCERS FOR THE 2008 PLANTING SEASON

Cultivar	<u>%</u>	Cultivar	<u>%</u>
SST 027	17.95	SST 047	0.52
SST 88	15.19	SST 825	0.457
SST 015	12.69	Tugela	0.456
SST 835	10.01	PAN 3120	0.410
CRN 826	9.92	PAN 3377	0.330
Duzi	6.10	AFG 5548	0.329
SST 57	3.29	Steenbras	0.284
SST 876	3.15	SST 399	0.220
Elands	2.98	Baviaans	0.216
Komati	2.59	SST 966	0.159
SST 806	2.01	SST 334	0.135
Krokodil	1.85	PAN 3144	0.058
SST 822	1.66	PAN 3434	0.056
SST 356	1.45	SST 322	0.055
Kariega	1.12	PAN 3364	0.044
Matlabas	0.97	Inia	0.039
Olifants	0.76	SST 367	0.027
PAN 3349	0.74	SST 935	0.024
PAN 3118	0.60	SST 946	0.023
Gariep	0.58	Marico	0.004
Betta DN	0.53	SST 363	0.001
			100

Note: These figures are not absolute, but the best and only figures available.

METHODS

GRADING:

Full grading was done in accordance with the Regulations relating to the grading, packing and marking of wheat intended for sale in the Republic of South Africa (No. R. 905 of 10 July 1998 as amended by Nos. R. 1421 of 6 November 1998, R. 876 of 14 September 2001 and R. 979 of 19 July 2002, R. 1210 of 29 August 2003 and Dispensation: Reference No. 21/4/1/1 and Serial No. 791 of 25 July 2003).

Hectolitre mass, screenings, protein and falling number were determined. The determination of deviations relating to wheat kernels comprised foreign matter including gravel, stones, turf and glass; other grain and unthreshed ears; damaged kernels including heat-damaged kernels, immature kernels, insect-damaged kernels and sprouted kernels; heavily frost-damaged kernels; field fungi; storage fungi; ergot; noxious seeds; possible presence of undesirable odours and live insects.

Hectolitre mass means the mass in kilogram per hectolitre. Hectolitre mass provides a measure of the bulk density of the grain and is also useful as a guide to grain soundness and potential milling extraction.

Screenings means all material that passes through a standard sieve. A standard sieve is a hand sieve which consists of a slotted, stainless steel sieve with a thickness of 1,0 mm, mounted in durable plastic, with apertures 1,8 mm wide and 12,7 mm long, which fits into an aluminum pan with a solid bottom, and has a inner diameter of 300 mm and an outer diameter of 302,5 mm.

Damaged kernels means wheat kernels and pieces of wheat kernels -

- (a) which have been damaged by insects;
- (b) which have been distinctly discoloured (orange-brown, dark brown or black) by external heat or as a result of heating caused by internal fermentation in wheat with an excessive moisture content, excluding wheat kernels in respect of which the discolouration is confined to the germ end;
- (c) which are immature and have a distinctly green colour; and
- (d) in which germination has proceeded to such

an extent that the skin covering the embryo has been broken or the developing rootlets are clearly visible.

THOUSAND KERNEL MASS:

This is the weight in grams of one thousand kernels of grain and provides a measure of grain size and density. This determination does not include kernels that are broken or chipped.

FALLING NUMBER MILLING:

At least 300 g of wheat is cleaned by using the standard 1,8 mm sieve and by removing coarser impurities by hand. The sample is then milled on the falling number hammer mill fitted with a 0.8 mm screen.

MOISTURE:

ICC Standard No. 110/1 is used to determine the moisture content of wheat flour. This method determines moisture content as a loss in weight of a sample when dried in an oven at 130°C for 90 minutes or 2 hours for flour and whole wheat flour respectively.

PROTEIN:

The Dumas combustion analysis technique is used, according to AACC method 46-30, 1999.

This method prescribes a generic combustion method for the determination of crude protein. Combustion at high temperature in pure oxygen sets nitrogen free, which is measured by thermal conductivity detection. The total nitrogen content of the flour sample is determined and converted to equivalent protein by multiplication with a factor of 5.7 to obtain the protein content.

FALLING NUMBER:

This method is based upon the rapid gelatinization of an aqueous suspension of meal or flour in a boiling water bath and subsequent measurement of the liquefaction of the starch paste by the alphaamylase in the sample. The method measures the alpha-amylase activity.

ICC Standard No.107/1, 1995 is used to determine the falling number. Only the altitude-corrected value is reported.

QUADROMAT MILLING:

Cleaned wheat samples are conditioned by adding 3 ml water per 100 g wheat, 18 hours prior to milling. The samples are then milled on the Quadromat junior laboratory mill.

MIXOGRAPH:

A 35 g mixograph is used. The amount of water added to the flour is adjusted according to the flour protein content. Industry Accepted Method 020 based on AACC method 54-40A, 1999 is followed.

Mixogram peak time is the time measured in minutes that a dough takes to reach its maximum consistency or first indication of dough weakening. The peak time is a measure of optimum dough development and thus a measure of protein quality.

Mixogram tail height at 6 minutes is the distance in millimetres measured from the base line of the paper at 6 minutes to the graph centre point at 6 minutes. This figure is an indication of the weakening effect of the dough. Higher values indicate flours that are more tolerant to mixing.

BÜHLER MILLING:

Cleaned wheat samples are damped to between 15,0 % and 16,0 % moisture according to the wheat moisture and kernel hardness and allowed to stand for 20 hours. Samples are then milled on a standard Bühler MLU 202 mill and passed through a bran finisher.

BÜHLER EXTRACTION:

The extraction represents the flour yield after milling plus flour obtained form bran that passed through a bran finisher. Flour extraction is calculated from the mass of the total products. Bühler MLU 202 mill set for South African wheat, mill settings and sieve sizes deviate from AACC method 26-21A, 1999.

COLOUR:

The Kent Jones colour is determined by following FTP Method No. 0007/3, 7/1991. This method

determines the influence of the branny material present in flour by measuring reflectance with a light source in the green band of the light spectrum. The lower the Kent Jones colour, the lighter the flour.

FARINOGRAPH:

AACC method 54-21, 1999 constant flour weight procedure is followed, using 300 g of flour on a 14 % moisture basis.

The **farinograph** measures and records the resistance of a dough to mixing, as it is formed from flour and water, developed and broken down. The dough is subjected to a prolonged, relatively gentle mixing action at a constant temperature.

The water absorption is the amount of water required for a dough to reach a definite consistency (500 Brabender units). The amount of water added to the flour is expressed as a percentage of the flour mass and reported on a 14 % moisture basis.

The **development time** is the time from the beginning of water addition until the dough reaches its optimum consistency and the point immediately before the first indication of weakening. A long mixing time can be associated with flours that have a high percentage of glutenforming proteins.

The **stability** is the time during which the top of the curve intercepts a horizontal line through the centre of the curve. This gives an indication of the dough's tolerance to mixing: the longer the stability, the longer the mixing time that the dough can withstand. A dough with a longer stability can also withstand a longer fermentation period.

The **mixing tolerance index value** is the difference, in Brabender units, between the top of the curve at the peak and the top of the curve measured 5 minutes after the peak is reached. The value gives an indication of the extent to which breakdown of the dough occurs. The higher the value, the more and the quicker the breakdown of the dough occurs. This value is similar to the mixogram tail height.

EXTENSOGRAPH:

ICC Standard No. 114/1, 1992 is followed.

The **strength** gives an indication of the total force (work) needed to stretch the dough and is represented by the area under the curve.

The **maximum height** gives and indication of the dough's resistance to stretching and is measured as the mean of the maximum heights of the curves of the two test pieces.

The **extensibility** is the mean length at the base of the 2 curves and indicates the stretchability of the dough.

ALVEOGRAPH:

ICC Standard No.121,1992 is followed.

The **alveograph** measures the resistance of the dough to stretching and also how extensible the dough is. The alveograph stretches the dough in more than one direction (as is happening during proofing), whereas the extensograph stretches the dough in only one direction.

Strength (**S**): The area under the curve gives an indication of the dough strength.

Stability (**P**): Obtained by multiplying the maximum height of the curve with a constant factor of 1.1. This value is an indication of the resistance of the dough to extension.

Distensibility (L): The length of the curve, measured along the base line, gives an indication of the extensibility of the dough and also predicts the handling characteristics of the dough.

P/L-value: This ratio is obtained by dividing the P-value by the L-value, thus providing an approximate indication of the shape of the curve that combines stability and extensibility.

100 g BAKING TEST:

This procedure, according to Industry Accepted Method 022 based on AACC Method 10-10B, 1999, provides an optimized bread-making method for evaluating bread wheat flour quality and a variety of dough ingredients by a straight-dough method in which all ingredients are incorporated in the initial mixing step.

Keys for the evaluation of the 100g Baking test:

- 0 Excellent
- 1 Very Good
- 2 Good
- 3 Questionable
- 4 Poor
- 5 Very Poor
- 6 Extremely Poor

Please note:

This 100 g Baking test evaluation does not give an indication of the baking quality of the flour, but refers to the relationship between the protein content and the bread volume.

MYCOTOXIN ANALYSES

Mycotoxins, produced by moulds or fungi, are natural contaminants of food and feedstuffs with serious implications for public health and economics, in particular with relation to the international food trade.

The mycotoxin analyses were carried out using ROSA (Rapid One Step Assay) Quantitative tests, which are lateral flow immuno asay tests, together with the ROSA-M reader for measuring the mycotoxin content. Thirty samples of the 480 wheat crop samples were tested for aflatoxin, deoxynivalenol and ochratoxin.

Fungi	Toxin	Method reference
Aspergillus flavus		ROSA Quantitative Method, 28 May 2008
Aspergillus ochraceus and several species of Penicillium sp.	Ochratoxin	ROSA Quantitative Method, 10 September 2008
Fusarium graminearum	Deoxynivalenol (DON)	ROSA Quantitative Method, 11 February 2009

2007/2008 IMPORTED WHEAT QUALITY - ARGENTINA (1 Oct 2007 to 30 Sep 2008)

Country of origin			A	rgen	tina				R	SA C	crop .	Avera	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	13	3	-	28	1	45	64	137	131	70	54	24	480
WHEAT														
GRADING														
Protein (12% mb), %	-	11.21	11.41	-	11.36	11.14	11.31	12.48	11.42	10.59	9.58	10.99	11.66	11.03
Moisture, %	-	11.8	12.1	-	11.9	11.9	11.8	11.6	11.4	12.0	11.1	11.4	11.8	11.6
Falling number, sec	-	406	337	-	399	414	397	369	368	359	351	364	323	360
1000 Kernel mass (13% mb), g	-	35.1	37.8	-	34.0	36.2	34.6	38.9	38.7	39.1	39.7	36.4	38.1	38.7
Hlm (dirty), kg/hl	-	79.5	77.2	-	78.1	77.7	78.5	78.9	78.7	78.0	78.5	76.2	75.5	78.1
Screenings (<1,8mm), %	-	2.33	2.17	-	3.75	3.04	3.22	1.42	1.36	1.33	1.16	3.01	3.02	1.60
Gravel, stones, turf and glass, %	-	0.00	0.00	-	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00
Foreign matter, %	-	0.04	0.09	-	0.18	0.12	0.13	0.05	0.05	0.05	0.07	0.08	0.19	0.06
Other grain & unthreshed ears, %	-	0.10	0.30	-	0.21	0.48	0.19	0.23	0.25	0.30	0.26	0.54	0.32	0.30
Heat damaged kernels, %	-	0.04	0.03	-	0.02	0.16	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	-	0.07	0.04	-	0.07	0.12	0.07	0.12	0.11	0.06	0.06	0.16	0.14	0.10
Insect damaged kernels, %	-	0.18	0.14	-	0.13	0.18	0.14	0.24	0.17	0.15	0.16	0.75	2.08	0.33
Heavily frost damaged kernels, %	-	0.00	0.03	-	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	-	0.29	0.50	-	0.12	0.24	0.20	0.23	0.19	0.15	0.14	0.17	1.08	0.22
Total damaged kernels, %	-	0.58	0.71	_	0.34	0.70	0.44	0.59	0.47	0.36	0.35	1.08	3.30	0.65
Combined deviations, %	<u> </u>	3.06	3.11	-	4.48	4.34	3.98	2.30	2.13	2.04	1.85	4.71	6.85	2.61
Field fungi, %	-	0.23	0.26	-	0.31	0.08	0.28	0.14	0.10	0.09	0.06	0.18	0.14	0.11
Storage fungi, %	-	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	-	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp. Datura sp)	-	0.00	0	_	0	0	0	0	0	0	0	0	1	0.00
Noxious seeds (Argemone mexicana)	-	0	0	_	0	0	0	0	0	0	0	0	0	0
Live insects		No	No		No	No	No	No	No	No	No	No	No	No
Undesirable odour	-	No	No	-	No	Yes	No	No	No	No	No	No	No	No
Ondesirable ododi		140	INO		INO	163	140	140	140	140	140	140	140	140
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	13	3	-	28	1	45	23	26	18	14	13	6	100
BÜHLER EXTRACTION, %	-	73.8	73.4	-	73.5	72.9	73.6	75.7	76.0	75.7	74.9	75.1	75.4	75.6
FLOUR														
Colour, KJ	-	-1.0	-0.6	-	-0.9	-0.7	-0.9	-1.7	-1.9	-2.1	-2.4	-1.7	-0.8	-1.9
												<u> </u>		
100g BAKING TEST														
Baking water absorption, %	-	59.8	60.1	-	60.0	59.9	59.9	61.5	60.3	59.4	57.7	59.6	61.2	60.0
Loaf volume, cm³	-	686	723	-	704	660	699	892	857	802	704	800	873	827
Evaluation	-	4	3	-	4	5	4	1	1	1	2	1	1	1
FARINGCRAM														
FARINOGRAM	_	L 60 4	60.2		60.1	60.0	60.0	62.3	61.0	60.2	59.3	59.8	61.0	60.8
Water absorption, %	-	60.4		-		60.9	60.2			_	_		61.0	60.8
Development time, min	-	1.8	1.8	-	1.8	1.9	1.8	4.8	3.8	2.9	2.0	3.0	4.4	3.5
Stability, mm	-	3.1	2.8	-	3.4	2.3	3.2	9.0	7.6	6.6	4.5	6.4	7.9	7.2
Mixing tolerance index, BU	-	70	72	-	67	78	68	37	41	44	58	46	43	44

Country of origin			Α	rgen	tina				R	SAC	rop	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	13	3	-	28	1	45	23	26	18	14	13	6	100
ALVEOGRAM														
Strength (S), cm ²	-	38.4	37.2	-	38.8	33.3	38.4	47.9	42.8	39.8	33.0	39.5	46.9	41.9
Stability (P), mm	-	119	112	-	114	124	116	92	86	89	96	86	83	89
Distensibility (L), mm	-	54	60	-	58	41	56	118	114	101	75	101	127	106
P/L	-	2.30	2.08	-	2.05	3.00	2.15	0.81	0.78	0.98	1.54	0.93	0.67	0.94
EXTENSOGRAM														
Strength, cm²	-	93	90	-	91	94	91	106	98	93	77	97	114	97
Max. height, BU	-	449	435	_	443	460	445	377	371	384	371	388	392	378
Extensibility, mm	-	145	146	-	143	143	144	195	184	172	142	170	200	178
MIXOGRAM														
Peak time, min	-	4.0	4.3	-	4.0	4.9	4.1	2.6	2.6	2.9	3.0	2.8	2.8	2.8
Absorption, %	-	59.9	60.1	-	60.0	59.9	60.0	62.4	61.0	60.0	58.7	60.2	61.8	60.8
MYCOTOXINS														
Aflatoxin, ppb [max.value]				0.00 [<							0.33 [5.			
Deoxynivalenol, ppm [max. value]				1.11 [3.							1.36 [2.			
Ochratoxin A, ppb [max. value]				0.27 [1.	.90]						0.33 [2	80]		
No. of samples				15							30			

2007/2008 IMPORTED WHEAT QUALITY - CANADA (1 Oct 2007 to 30 Sep 2008)

Country of origin				Cana	da				R	SA C	rop	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Averag
No. of samples	4	-	1	1	14	-	20	64	137	131	70	54	24	480
WHEAT														
GRADING														
Protein (12% mb), %	13.28	-	10.19	9.76	13.42	-	13.05	12.48	11.42	10.59	9.58	10.99	11.66	11.03
Moisture, %	12.2	-	12.2	12.6	12.4	-	12.3	11.6	11.4	12.0	11.1	11.4	11.8	11.6
Falling number, sec	403	-	318	327	389	-	385	369	368	359	351	364	323	360
1000 Kernel mass (13% mb), g	34.0	-	32.1	32.4	31.8	-	32.2	38.9	38.7	39.1	39.7	36.4	38.1	38.7
Hlm (dirty), kg/hl	80.8	-	74.3	74.1	78.0	_	78.2	78.9	78.7	78.0	78.5	76.2	75.5	78.1
Screenings (<1,8mm), %	2.52	_	2.80	2.96	4.33	_	3.82	1.42	1.36	1.33	1.16	3.01	3.02	1.60
Gravel, stones, turf and glass, %	0.00	_	0.00	0.00	0.00	_	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00
Foreign matter, %	0.05	_	0.06	0.12	0.05	_	0.06	0.05	0.05	0.05	0.07	0.08	0.19	0.06
Other grain & unthreshed ears, %	0.46	_	0.24	0.24	0.34	_	0.36	0.23	0.25	0.30	0.26	0.54	0.32	0.30
Heat damaged kernels, %	0.02	_	0.00	0.00	0.03	_	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mmature kernels, %	0.02	-	0.00	0.00	0.00	_	0.01	0.12	0.11	0.06	0.06	0.16	0.14	0.10
nsect damaged kernels, %	0.02	_	0.14	0.08	0.15		0.01	0.12	0.17	0.15	0.16	0.75	2.08	0.33
Heavily frost damaged kernels, %	0.14	_	0.00	0.00	0.13		0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.04	_	0.56	0.00	0.16		0.03	0.23	0.19	0.15	0.14	0.00	1.08	0.00
Fotal damaged kernels, %	0.24		0.70	0.32	0.34		0.10	0.59	0.13	0.36	0.35	1.08	3.30	0.65
Combined deviations, %	3.27	_	3.80	3.64	5.06	_	4.57	2.30	2.13	2.04	1.85	4.71	6.85	2.61
Field fungi, %	0.04	-	0.00	0.00	0.06	-	0.05	0.14	0.10	0.09	0.06	0.18	0.14	0.11
Storage fungi, %	0.04	_	0.00	0.00	0.05	_	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	0.02	_	0.00	0.00	0.03	_	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0.02	_	0.00	0.00	0.01	_	0.01	0.00	0.00	0.00	0.00	0.00	1	0.00
Noxious seeds (Argemone mexicana)	0	_	0	0	0		0	0	0	0	0	0	0	0
Live insects	No	_	No	No	No		No	No	No	No	No	No	No	No
Jndesirable odour	No	-	No	No	No	-	No	No	No	No	No	No	No	No
ondesirable ododi	INO		INO	INO	INO	-	INO	INO	INO	INO	INO	INO	INO	INO
		D0	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
	B1	B2	D3		_								_	100
No. of samples	4	- -	1	1	14	-	20	23	26	18	14	13	6	100
No. of samples BÜHLER EXTRACTION, %	+		-				_		26 76.0		14 74.9	13 75.1	6 75.4	75.6
BÜHLER EXTRACTION, %	4		1	1	14	-	20	23		18		-		
BÜHLER EXTRACTION, % FLOUR	4 75.3		1 72.7	1 73.2	14 74.2	-	20 74.3	23 75.7	76.0	18 75.7	74.9	75.1	75.4	75.6
BÜHLER EXTRACTION, %	4		1	1	14	-	20	23		18		-		
BÜHLER EXTRACTION, % FLOUR	4 75.3		1 72.7	1 73.2	14 74.2	-	20 74.3	23 75.7	76.0	18 75.7	74.9	75.1	75.4	75.6
BÜHLER EXTRACTION, % FLOUR Colour, KJ	4 75.3		1 72.7	1 73.2	14 74.2	-	20 74.3	23 75.7	76.0	18 75.7	74.9	75.1	75.4	75.6
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST	75.3 -1.4		72.7	73.2	14 74.2 -1.0	-	20 74.3 -1.0	23 75.7 -1.7	76.0	18 75.7 -2.1	74.9	75.1	75.4	75.6
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, %	75.3 -1.4 62.8		72.7 -0.2	73.2 0.1 51.6	14 74.2 -1.0 62.6	-	20 74.3 -1.0 61.6	23 75.7 -1.7 61.5	76.0 -1.9 60.3	18 75.7 -2.1	74.9 -2.4 57.7	75.1 -1.7 59.6	75.4 -0.8	75.6 -1.9
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³	75.3 -1.4 62.8 889		72.7 -0.2 51.6 640	73.2 0.1 51.6 635	14 74.2 -1.0 62.6 897	-	20 74.3 -1.0 61.6 870	23 75.7 -1.7 61.5 892	76.0 -1.9 60.3 857	75.7 -2.1 59.4 802	74.9 -2.4 57.7 704	75.1 -1.7 59.6 800	75.4 -0.8 61.2 873	75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³	75.3 -1.4 62.8 889		72.7 -0.2 51.6 640	1 73.2 0.1 51.6 635 3	14 74.2 -1.0 62.6 897	-	20 74.3 -1.0 61.6 870	23 75.7 -1.7 61.5 892	76.0 -1.9 60.3 857	75.7 -2.1 59.4 802	74.9 -2.4 57.7 704	75.1 -1.7 59.6 800	75.4 -0.8 61.2 873	75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation	75.3 -1.4 62.8 889		72.7 -0.2 51.6 640	73.2 0.1 51.6 635	14 74.2 -1.0 62.6 897	-	20 74.3 -1.0 61.6 870	23 75.7 -1.7 61.5 892	76.0 -1.9 60.3 857	75.7 -2.1 59.4 802	74.9 -2.4 57.7 704	75.1 -1.7 59.6 800	75.4 -0.8 61.2 873	75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm² Evaluation FARINOGRAM	75.3 -1.4 62.8 889 2		72.7 -0.2 51.6 640 3	1 73.2 0.1 51.6 635 3	-1.0 -1.0 62.6 897 2	- -	20 74.3 -1.0 61.6 870 2	23 75.7 -1.7 61.5 892	76.0 -1.9 60.3 857	-2.1 59.4 802	74.9 -2.4 57.7 704 2	75.1 -1.7 59.6 800 1	75.4 -0.8 61.2 873 1	75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption, %	4 75.3 -1.4 62.8 889 2		1 72.7 -0.2 51.6 640 3	1 73.2 0.1 51.6 635 3	-1.0 -1.0 62.6 897 2	- - - - -	20 74.3 -1.0 61.6 870 2	23 75.7 -1.7 61.5 892 1	76.0 -1.9 60.3 857 1	75.7 -2.1 59.4 802 1	74.9 -2.4 57.7 704 2 59.3	75.1 -1.7 59.6 800 1	75.4 -0.8 61.2 873 1	75.6 -1.9 60.0 827 1

Country of origin			(Cana	da				R	RSA C	Crop .	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	4	-	1	1	14	-	20	23	26	18	14	13	6	100
ALVEOGRAM														
Strength (S), cm ²	52.2	-	17.4	16.4	50.2	-	47.3	47.9	42.8	39.8	33.0	39.5	46.9	41.9
Stability (P), mm	103	-	39	38	94	-	90	92	86	89	96	86	83	89
Distensibility (L), mm	100	-	96	95	107	-	104	118	114	101	75	101	127	106
P/L	1.04	-	0.41	0.40	0.90	-	0.88	0.81	0.78	0.98	1.54	0.93	0.67	0.94
EXTENSOGRAM														
Strength, cm ²	107	-	-	-	123	-	121	106	98	93	77	97	114	97
Max. height, BU	388	-	-	-	444	-	437	377	371	384	371	388	392	378
Extensibility, mm	192	-	-	-	195	-	195	195	184	172	142	170	200	178
MIXOGRAM														
Peak time, min	3.2	-	4.3	5.5	3.6	-	3.6	2.6	2.6	2.9	3.0	2.8	2.8	2.8
Absorption, %	62.8	-	58.6	58.2	62.8	-	62.4	62.4	61.0	60.0	58.7	60.2	61.8	60.8
MYCOTOXINS														
Aflatoxin, ppb [max.value]				0.33 [<							0.33 [5			
Deoxynivalenol, ppm [max. value]				0.23 [0.							1.36 [2.			
Ochratoxin A, ppb [max. value]				0.75 [2.	00]						0.33 [2.			
No. of samples				6							30			

2007/2008 IMPORTED WHEAT QUALITY - GERMANY (1 Oct 2007 to 30 Sep 2008)

				erma	any					SAC	rop	1		
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Averag
No. of samples	-	1	-	1	-	-	2	64	137	131	70	54	24	480
WHEAT														
GRADING														
Protein (12% mb), %	-	11.62	-	11.93	-	-	11.78	12.48	11.42	10.59	9.58	10.99	11.66	11.03
Moisture, %	-	12.6	-	12.1	-	-	12.4	11.6	11.4	12.0	11.1	11.4	11.8	11.6
Falling number, sec	1 -	332	-	279	-	-	306	369	368	359	351	364	323	360
1000 Kernel mass (13% mb), g	-	40.3	-	37.7	-	-	39.0	38.9	38.7	39.1	39.7	36.4	38.1	38.7
Hlm (dirty), kg/hl	-	76.8	_	73.4	_	_	75.1	78.9	78.7	78.0	78.5	76.2	75.5	78.1
Screenings (<1,8mm), %	+	1.47	_	2.13	_	_	1.80	1.42	1.36	1.33	1.16	3.01	3.02	1.60
Gravel, stones, turf and glass, %	+	0.00	_	0.00	_	_	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00
Foreign matter, %	+	0.04	-	0.10	_	_	0.07	0.05	0.05	0.05	0.07	0.08	0.19	0.06
Other grain & unthreshed ears, %	<u> </u>	0.54	_	0.58	_	_	0.56	0.23	0.25	0.30	0.26	0.54	0.32	0.30
Heat damaged kernels, %	+	0.00	_	0.00	_	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mmature kernels, %	 -	0.00	-	0.00	_	_	0.00	0.12	0.11	0.06	0.06	0.16	0.14	0.10
nsect damaged kernels, %	1 -	0.00	_	0.08	_	_	0.04	0.24	0.17	0.15	0.16	0.75	2.08	0.33
Heavily frost damaged kernels, %	+	0.00	_	0.00	_	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	+	0.08	_	0.00	_	_	0.04	0.23	0.19	0.15	0.14	0.17	1.08	0.22
Fotal damaged kernels, %	+ -	0.08		0.08		_	0.04	0.59	0.13	0.36	0.35	1.08	3.30	0.65
Combined deviations, %	+-	2.13	<u> </u>	2.89		_	2.51	2.30	2.13	2.04	1.85	4.71	6.85	2.61
Field fungi, %	+ -	0.00	-	0.08		_	0.04	0.14	0.10	0.09	0.06	0.18	0.03	0.11
Storage fungi, %	+ -	0.00	_	0.00		_	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	+ -	0.00	_	0.00		_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	+ -	0.00	_	0.00		_	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00
	-	0	_	0	_	_	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	+-		-		-		-			_		-	-	No
Live insects	+ -	No	-	No	-	-	No	No	No	No	No	No	No	
Jndesirable odour		No	-	No	-	-	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	В4	UT	cow	Average
No. of samples	B1 -	B2	B3	B4 1	UT -	cow	Average 2	B1 23	B2 26	B3	B4 14	UT 13	cow 6	Average
No. of samples BÜHLER EXTRACTION, %														
BÜHLER EXTRACTION, %		1		1	-	-	2	23	26	18	14	13	6	100
BÜHLER EXTRACTION, % FLOUR	-	1 74.8		1 73.4	-	-	2 74.1	23 75.7	26 76.0	18 75.7	14 74.9	13 75.1	6 75.4	100 75.6
BÜHLER EXTRACTION, %		1		1	-	-	2	23	26	18	14	13	6	100
BÜHLER EXTRACTION, % FLOUR	-	1 74.8		1 73.4	-	-	2 74.1	23 75.7	26 76.0	18 75.7	14 74.9	13 75.1	6 75.4	100 75.6
BÜHLER EXTRACTION, % FLOUR Colour, KJ	-	1 74.8		1 73.4	-	-	2 74.1	23 75.7	26 76.0	18 75.7	14 74.9	13 75.1	6 75.4	100 75.6
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST	-	1 74.8 0.1	-	73.4	-	-	74.1	23 75.7 -1.7	26 76.0	18 75.7 -2.1	14 74.9 -2.4	13 75.1 -1.7	6 75.4 -0.8	100 75.6 -1.9
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, %	-	74.8 0.1 60.3	-	73.4 0.4 60.6	-	-	2 74.1 0.3	23 75.7 -1.7 61.5	26 76.0 -1.9	18 75.7 -2.1	14 74.9 -2.4 57.7	13 75.1 -1.7	6 75.4 -0.8	100 75.6 -1.9
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation	-	1 74.8 0.1 60.3 775	-	1 73.4 0.4 60.6 780	-	-	2 74.1 0.3 60.5 778	23 75.7 -1.7 61.5 892	26 76.0 -1.9 60.3 857	75.7 -2.1 59.4 802	74.9 -2.4 57.7 704	13 75.1 -1.7 59.6 800	6 75.4 -0.8 61.2 873	100 75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM	-	1 74.8 0.1 60.3 775 2		73.4 0.4 60.6 780 2	- -		2 74.1 0.3 60.5 778 2	23 75.7 -1.7 61.5 892	26 76.0 -1.9 60.3 857	75.7 -2.1 59.4 802	74.9 -2.4 57.7 704 2	75.1 -1.7 -59.6 800 1	6 75.4 -0.8 61.2 873	100 75.6 -1.9 60.0 827
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption, %		74.8 0.1 60.3 775 2		73.4 0.4 0.6 60.6 780 2	- - - -	- - - -	2 74.1 0.3 60.5 778 2	23 75.7 -1.7 61.5 892 1	26 76.0 -1.9 60.3 857 1	75.7 -2.1 59.4 802 1	74.9 74.9 -2.4 57.7 704 2	13 75.1 -1.7 59.6 800 1	6 75.4 -0.8 -0.8 61.2 873 1	100 75.6 -1.9 60.0 827 1
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption, % Development time, min		74.8 0.1 60.3 775 2 58.4 1.8	- - - -	73.4 0.4 0.6 60.6 780 2 59.7 1.9	- - - - -	- - - -	2 74.1 0.3 60.5 778 2 59.1 1.9	23 75.7 -1.7 61.5 892 1 62.3 4.8	26 76.0 -1.9 60.3 857 1 61.0 3.8	75.7 -2.1 59.4 802 1	74.9 -2.4 57.7 704 2 59.3 2.0	75.1 75.1 -1.7 59.6 800 1 59.8 3.0	6 75.4 -0.8 61.2 873 1 61.0 4.4	100 75.6 -1.9 60.0 827 1 60.8 3.5
BÜHLER EXTRACTION, % FLOUR Colour, KJ 100g BAKING TEST Baking water absorption, % Loaf volume, cm³ Evaluation FARINOGRAM Water absorption, %		74.8 0.1 60.3 775 2		73.4 0.4 0.6 60.6 780 2	- - - -	- - - -	2 74.1 0.3 60.5 778 2	23 75.7 -1.7 61.5 892 1	26 76.0 -1.9 60.3 857 1	75.7 -2.1 59.4 802 1	74.9 74.9 -2.4 57.7 704 2	13 75.1 -1.7 59.6 800 1	6 75.4 -0.8 -0.8 61.2 873 1	100 75.6 -1.9 60.0 827 1

Country of origin			(erma	any				R	SAC	rop /	Avera	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	1	-	1	-	-	2	23	26	18	14	13	6	100
ALVEOGRAM														
Strength (S), cm ²	-	37.6	-	38.7	-	-	38.2	47.9	42.8	39.8	33.0	39.5	46.9	41.9
Stability (P), mm	-	104	-	110	-	-	107	92	86	89	96	86	83	89
Distensibility (L), mm	-	62	-	62	1	-	62	118	114	101	75	101	127	106
P/L	-	1.67	-	1.78	-	-	1.73	0.81	0.78	0.98	1.54	0.93	0.67	0.94
EXTENSOGRAM														
Strength, cm ²	-	87	_	84	-	_	86	106	98	93	77	97	114	97
Max. height, BU	-	430	-	425	-	-	428	377	371	384	371	388	392	378
Extensibility, mm	-	140	-	135	-	-	138	195	184	172	142	170	200	178
MIXOGRAM														
Peak time, min	-	4.2	-	3.5	-	-	3.9	2.6	2.6	2.9	3.0	2.8	2.8	2.8
Absorption, %	-	60.3	-	60.6	-	-	60.5	62.4	61.0	60.0	58.7	60.2	61.8	60.8
MYCOTOXINS														
Aflatoxin, ppb [max.value]				<5 [<	5]						0.33 [5.	00]		
Deoxynivalenol, ppm [max. value]				0.00 [0.	00]						1.36 [2.	70]		
Ochratoxin A, ppb [max. value]				0.00 [0.	00]						0.33 [2.	80]		
No. of samples				1							30			

2007/2008 IMPORTED WHEAT QUALITY - USA (1 Oct 2007 to 30 Sep 2008)

2007/2008 Imported Wheat Quality Versus 2007/2008 RSA Season

Country of origin				USA	4				R	SAC	rop	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	2	3	3	1	15	-	24	64	137	131	70	54	24	480
WHEAT														
GRADING														
Protein (12% mb), %	12.65	11.48	11.46	11.88	12.14	_	12.01	12.48	11.42	10.59	9.58	10.99	11.66	11.03
Moisture, %	11.5	11.6	12.7	12.8	11.6	_	11.8	11.6	11.4	12.0	11.1	11.4	11.8	11.6
Falling number, sec	468	478	273	302	366	_	374	369	368	359	351	364	323	360
1000 Kernel mass (13% mb), g	31.4	31.7	38.9	40.8	30.4	_	32.1	38.9	38.7	39.1	39.7	36.4	38.1	38.7
Hlm (dirty), kg/hl	79.2	79.0	75.4	72.9	77.1	_	77.1	78.9	78.7	78.0	78.5	76.2	75.5	78.1
Screenings (<1,8mm), %	2.92	2.34	2.17	2.24	4.16	_	3.50	1.42	1.36	1.33	1.16	3.01	3.02	1.60
Gravel, stones, turf and glass, %	0.00	0.00	0.00	0.00	0.00	_	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00
Foreign matter, %	0.37	0.12	0.07	0.32	0.14	_	0.16	0.05	0.05	0.05	0.07	0.08	0.19	0.06
Other grain & unthreshed ears, %	0.26	0.12	0.30	0.68	0.26	_	0.27	0.23	0.25	0.30	0.26	0.54	0.32	0.30
Heat damaged kernels, %	0.00	0.04	0.00	0.00	0.03	_	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.00	0.00	0.00	0.00	0.00	_	0.00	0.12	0.11	0.06	0.06	0.16	0.14	0.10
Insect damaged kernels, %	0.00	0.05	0.00	0.00	0.00	-	0.00	0.12	0.17	0.00	0.16	0.75	2.08	0.10
Heavily frost damaged kernels, %	0.00	0.00	0.09	0.32	0.02	_	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.52	0.00	0.02	-	0.06	0.00	0.00	0.00	0.00	0.00	1.08	0.00
Sprouted kernels, %	_				0.62	-		0.23			-			
Total damaged kernels, %	0.38	0.20	0.62	0.00		-	0.52		0.47	0.36	0.35	1.08	3.30	0.65
Combined deviations, %	3.93	2.79	3.17	3.24	5.19	-	4.45	2.30	2.13	2.04	1.85	4.71	6.85	2.61
Field fungi, %	0.00	0.00	0.19	0.16	0.13	-	0.11	0.14	0.10	0.09	0.06	0.18	0.14	0.11
Storage fungi, %	0.00	0.00	0.00	0.00	0.01	-	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0	0	0	0	0	-	0	0	0	0	0	0	1	0
Noxious seeds (Argemone mexicana)	0	0	0	0	0	-	0	0	0	0	0	0	0	0
Live insects	No	No	No	No	No	-	No	No	No	No	No	No	No	No
Undesirable odour	No	No	No	No	No	-	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	2	3	3	1	15	-	24	23	26	18	14	13	6	100
BÜHLER EXTRACTION, %	74.4	73.2	73.1	73.2	73.3	-	73.4	75.7	76.0	75.7	74.9	75.1	75.4	75.6
FLOUR														
FLOUR	4.0		0.4		0.4		0.4	4 7	4.0	0.4	0.4	4 7		4.0
Colour, KJ	-1.2	-0.9	0.4	0.2	-0.4	-	-0.4	-1.7	-1.9	-2.1	-2.4	-1.7	-0.8	-1.9
100g BAKING TEST														
Baking water absorption, %	61.8	60.2	59.9	60.6	60.8	-	60.7	61.5	60.3	59.4	57.7	59.6	61.2	60.0
Loaf volume, cm ³	885	795	768	780	848	-	831	892	857	802	704	800	873	827
Evaluation	1	1	1	2	1	-	1	1	1	1	2	1	1	1
	<u> </u>							-						
FARINOGRAM														
Water absorption, %	60.5	57.9	57.2	59.5	58.0	-	58.1	62.3	61.0	60.2	59.3	59.8	61.0	60.8
Development time, min	2.8	1.9	1.6	1.7	2.4	-	2.2	4.8	3.8	2.9	2.0	3.0	4.4	3.5
Stability, mm	8.6	4.0	3.0	4.0	6.4	-	5.7	9.0	7.6	6.6	4.5	6.4	7.9	7.2
Mixing tolerance index, BU	38	62	74	55	52	-	55	37	41	44	58	46	43	44

Country of origin				USA	4				R	SA C	Crop A	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	2	3	3	1	15	-	24	23	26	18	14	13	6	100
ALVEOGRAM														
Strength (S), cm²	56.0	44.9	32.3	38.8	44.8	-	43.9	47.9	42.8	39.8	33.0	39.5	46.9	41.9
Stability (P), mm	107	121	92	118	90	-	97	92	86	89	96	86	83	89
Distensibility (L), mm	98	62	69	58	94	-	86	118	114	101	75	101	127	106
P/L	1.12	1.95	1.47	2.01	0.98	-	1.22	0.81	0.78	0.98	1.54	0.93	0.67	0.94
EXTENSOGRAM														
Strength, cm ²	124	119	89	102	114	-	112	106	98	93	77	97	114	97
Max. height, BU	483	570	422	440	478	-	482	377	371	384	371	388	392	378
Extensibility, mm	177	147	146	162	167	-	162	195	184	172	142	170	200	178
MIXOGRAM														
Peak time, min	3.9	4.6	3.6	3.8	4.2	-	4.1	2.6	2.6	2.9	3.0	2.8	2.8	2.8
Absorption, %	61.8	60.2	59.9	60.6	61.0	-	60.8	62.4	61.0	60.0	58.7	60.2	61.8	60.8
MYCOTOXINS				0.04.75							0.06.7			
Aflatoxin, ppb [max.value]				0.91 [6.							0.33 [5.			
Deoxynivalenol, ppm [max. value]				0.29 [1.							1.36 [2.			
Ochratoxin A, ppb [max. value]				0.69 [4.	00]						0.33 [2.	80]		
No. of samples				11							30			

