

INDEX

	Page
Introduction	1
Production and protein distribution graphs	2
Quality 2007/2008 season	3
Wheat grades, cultivars and mycotoxins	4
Wheat class and grade per production area (pie charts)	5
Protein distribution graphs per production area (graphs)	5
Regional quality weighted averages	6
Protein, falling number, hectolitre mass, and	7
mixogram peak time over 10 seasons (graphs)	
Regional quality	8 - 11
RSA wheat production and sampling procedure	12
Graph of tons produced per hectare	13
Summary of imported wheat of 2006/2007 season	13
Graphs showing correlation between protein content and	14
100-gram bake volume over last four seasons	
Comparison of Flour Quality over last four seasons	15
Quality data plus rheological graphs per production region	16 - 45
Weighted average protein, falling number, hectolitre mass	46
and mixogram peak time per region compared over the	
last three seasons	
Grading table	47
Mycotoxin results	47
RSA chart plus seed figures	48
Methods	49 - 51
Imported wheat quality compared to RSA during the	52 - 61
2006/2007 production season	
Summary of RSA wheat quality of 2005/2006 and 2007/2008	62 - 63

Compiled and issued by the:

Southern African Grain Laboratory

3rd Floor CSIR building no.4 Meiring Naudé Street Pretoria SOUTH AFRICA

P.O.Box 1059 SILVERTON 0127

Tel: +27 (12) 349 2683 Fax: +27(12) 349 2686

E-mail: sagl@mweb.co.za Website: www.sagl.co.za

COMMERCIAL WHEAT QUALITY FOR THE 2007/2008 SEASON

Acknowledgements

With gratitude to:

- The Winter Cereal Trust for its financial support in conducting this survey.
- The Grain Silo Industry and its members for their cooperation in providing the samples to make this survey possible.

Introduction

The final wheat production for the 2007/2008 season (1 905 000 tons) was 10 % down from the previous season (2 105 000 tons). This is a little less than the 10-year average of 1 932 774 tons (1998/1999 to 2007/2008 seasons). (CEC.)

Although the hectolitre mass (78.1 kg/hl) and thousand kernel mass (38.7 g) were very good, only 13 % of this crop graded as B1.

The whole wheat protein averaged a ten year low of 11.03 % (12 % mb). This low protein was a result of slightly better yields. Different climatic conditions as well as differences in the rainfall patterns were observed in the various production areas.

The quality of the flour was average. The dough quality was similar to that of the previous season. The alveogram and extensogram showed that the flour had good strenghts, but the average farinogram development time of 3.6 minutes is still too short.

The straight-dough optimized 100-gram baking test, showed a lot of variation in volume according to the protein content, the same than in the previous season.

Significant quality differences can be seen between the three major production regions.

The Southern African Grain Laboratory (SAGL), receives samples from all the production areas, and determines the quality of the annual wheat crop. The results are made available on the website www.sagl. co.za as raw data from December each year. This hard copy report is available from June each year (with the option to also print the report using the website).

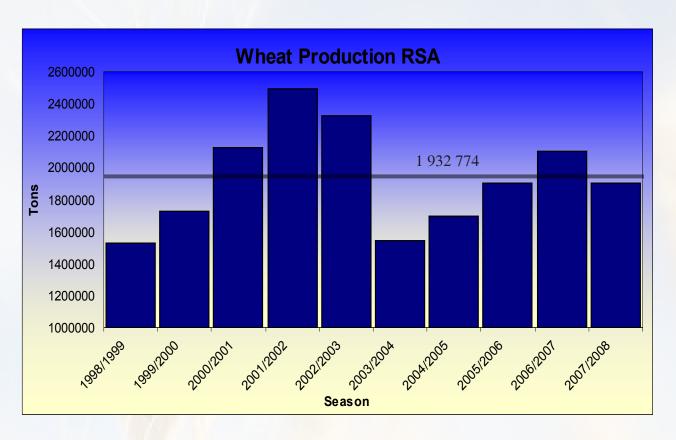
The SAGL has ISO 17025 accreditation as a testing laboratory and is also used as the reference

laboratory for grain quality analyses in Southern Africa.

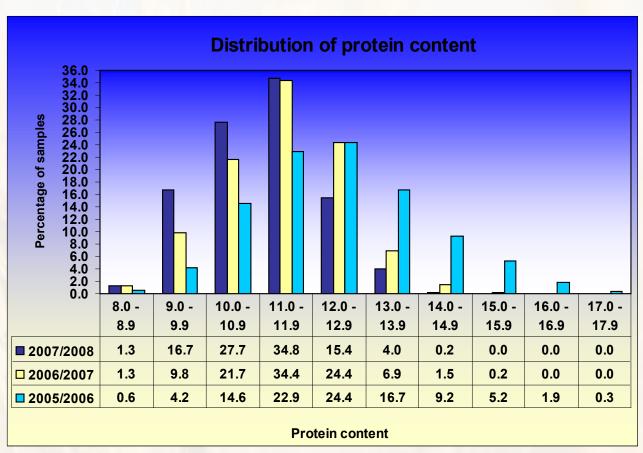
Samples, representing the production of each region, are fully graded and thousand kernel mass is done. Small samples are milled on the quadromat mill, after which a mixogram analysis is done.

Cultivar identification is done on these samples and sale figures of seed sold by the commercial grain silo owners are obtained.

Composite samples are made up per class and grade for each production region and milled on the Bühler mill. Rheological tests, such as a mixogram, farinogram, alveogram, extensogram and 100-gram baking test, are then performed.


Imported wheat (1 October 2006 - 30 September 2007) (Previous season)

The SAGL is also monitoring the quality of all wheat imported into South Africa. The same analyses which are done on the local crop are also done on the imported wheat. These results may only be made available at the end of each season.


The last twelve pages of this report contain summaries of imported wheat from specific countries during the 2006/2007 season compared to a summary of the local crop quality for the same season. Summaries of the quality of the local wheat for the 2005/2006 and 2007/2008 season are also provided.

The quality of the Argentinian, Bermudian and American wheat flour milled from wheat imported during 2006/2007, were not as good as that same season's local wheat flour, while the wheat flour quality from Canadian and German wheat imported during 2006/2007 compared to that of 2006/2007 seasons's local wheat flour quality.

WHEAT PRODUCTION IN THE RSA OVER THE LAST 10 SEASONS

DIFFERENCES IN THE DISTRIBUTION OF PROTEIN CONTENT OVER THE LAST 3 SEASONS

Crop quality for 2007/2008 season

The weighted protein average dropped to a ten year low of 11.0 % (12 % mb) (11.5 % in the previous season). The protein distribution graph of all the wheat produced was slightly skew to the lower proteins with most samples (35 %) having protein contents between 11.0 % to 11.9 % (12 % mb), followed by 28 % of the samples with protein contents between 10.0 % to 10.9 % and then 17 % of the samples between 9.0 % to 9.9 %. Only 20 % of the samples had protein contents of more than 12.0 %.

The weighted average hectolitre mass was 78.1 kg/hl (normal to 10 year average). A weighted average thousand kernel mass of 38.7 g was obtained.

The weighted average screenings (1.8 mm sieve) was 1.60 %.

The weighted average falling number was 360 seconds, eighteen samples gave falling number values of less than 250 seconds. These samples were mainly from the North-West production region and the Free State province.

The weighted mixogram peak time on flour from the Quadromat mill averaged 3.0 minutes and compares to the ten year average of 3.0 minutes. The weighted mixogram peak time of the flour from the Bühler mill averaged 2.8 minutes.

The weighted average Bühler extraction was 75.6 %, with a weighted average Kent Jones colour of -1.9 KJ.

The farinogram had a weighted average water absorption of 60.8 % (61.4 % the previous year) and a weighted average development time of 3.6 minutes (3.4 minutes last season). The weighted average alveogram strength was 41.9 cm² and the weighted average P/L value 0.94 (36.8 cm² and 0.93 the previous season). The weighted average extensogram strength was 97 cm² (82 cm² previous season).

The loaves baked using the 100 g straight-dough optimized bread making method, which refers to the relationship between the protein content and the bread volume, was evaluated from excellent to poor. The baking test with Free State (summer rainfall area) wheat flour scored the lowest with an average ranking of good, followed by the wheat flour from the Western Cape (winter rainfall areas) scoring an average ranking of very good with mostly the bread flour from the irrigation areas scoring an average ranking of excellent.

Quality of imported wheat for 2006/2007 season (previous season)

During the 2006/2007 season, 777 133 tons of wheat were imported for RSA. The biggest quantity was imported from Argentina, namely 310 524 tons, followed by USA with 232 266 tons, then Canada with 153 694 tons and Germany with 80 649 tons. (SAGIS web site)

For grading as well as dough and baking quality of the imported wheat, please see pages 52 to 61.

Wheat grades

Representative samples (480) of the crop were graded as follows: 13 % was graded B1, 29 % was graded B2, 27 % was graded B3, 15 % was graded B4 and UT plus COW made up 16 %. This year more samples graded B4 and UT compared to the previous year.

Grade B1 wheat in the Free State province only amounted to 13 % (36 % the previous season) and grade B1 in other summer rainfall areas amounted to 38 % (33 % in the previous season). In the irrigation areas 17 % (31 % in the previous season) of the wheat graded as B1 and in the Western Cape Province only 8 % graded as B1 (17 % in the previous season).

Cultivars

In the winter rainfall area, SST 027 dominated the market. The Western Cape produced 44 % of all wheat grown in South Africa during the 2007/2008 season. In the Western Cape, SST 027 (35 %) were followed by SST 015 (25 %) and SST 88 (24 %).

The cultivar that dominated the market in the Free State was Elands (23 %) (30% the previous year). Elands was followed by CRN 826 (19%), SST 806 (9 %) and then Gariep and PAN 3377 with both 7 %.

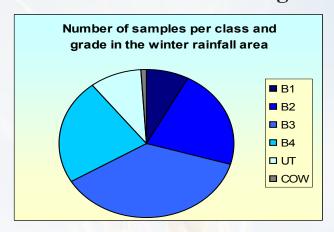
The cultivar CRN 826 (58 %) dominated the market in the Vaal and the Orange River areas, followed by SST 806 with 17 % and PAN 3434 with 14 %.

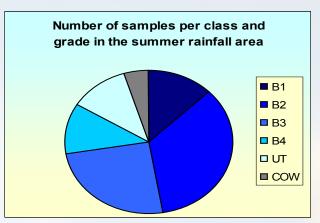
CRN 826 also dominated the North West (also mostly irrigation) with 36 %, followed by SST 806 (25 %) and SST 822 (10 %).

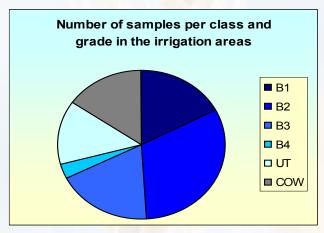
In Limpopo, Gauteng and Mpumalanga CRN 826 (26 %) was the dominant cultivar followed by SST 806 (28 %).

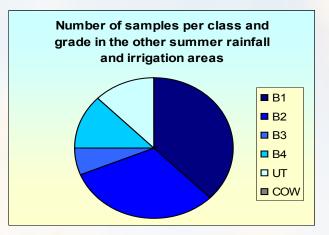
The above information was calculated from the cultivar identification done on all 480 crop samples.

Mycotoxins

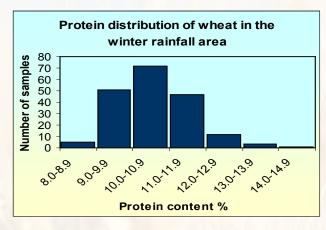

Mycotoxins, as secondary metabolites of moulds or fungi, can cause toxic effects in humans and animals consuming contaminated foods or feeds. Thirty samples (representing different regions) were selected randomly for mycotoxin analyses. These samples were tested for aflatoxin, deoxynivalenol and ochratoxin.

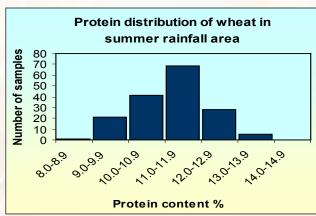

Aflatoxin (5 ppb) was found in two of the 30 samples tested. In accordance with Act 54 of 1972, Foodstuffs, Cosmetics and Disinfectants, the allowable level of total aflatoxin is 10 ppb (μg/kg). In accordance with Act 36 of 1947, Fertilizers, Farm Feeds, Agricultural and Stock Remedies, the allowable level of total aflatoxin is 10 to 50 ppb (μg/kg).

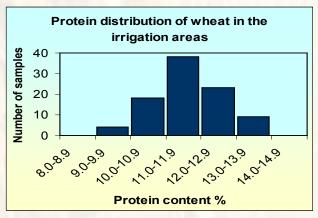

The average deoxynivalenol (DON) content was 1.36 ppm (mg/kg) with the highest value being 2.70 ppm. All samples tested, except one sample, had DON contents above 0.50 ppm.

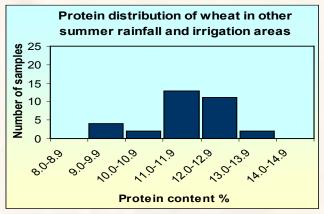

The average ochratoxin content was 0.33 ppb (µg/kg) with the highest value being 2.8 ppb.

Wheat class and grades per production area

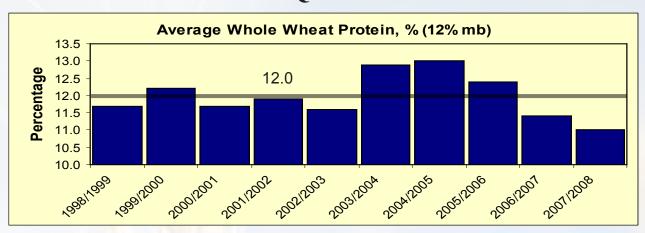


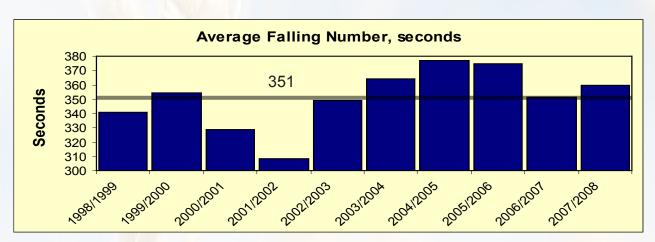




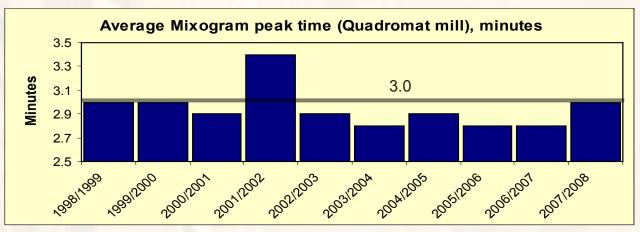


Protein distribution graphs per production area

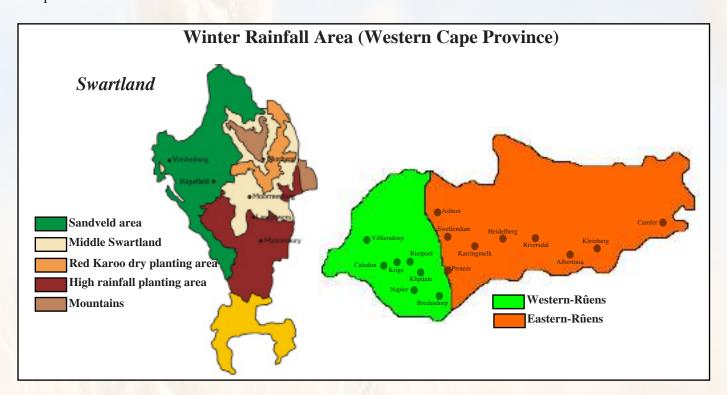



REGIONAL QUALITY WEIGHTED AVERAGES


	(V	ter ra area Veste Cape	rn	raiı	umm nfall a ee St	area	l	rigati areas		Si raii Iri	Other umm nfall a rigation	er and on	a	RSA verag	
Individual samples n		191			165			92			32			480	
Regions		1 - 6		2	21 - 2	8	10-12, 14-20, 36			29 - 35					
Hectolitre mass dirty, kg/hl		77.7			78.7		77.8				77.8			78.1	
1000 kernel mass (13 % mb), g		38.9			38.4			38.8			38.9			38.7	
Falling number, sec	N	370			337			372			391			360	
Screenings (1,8 mm), %		1.58			1.60			1.58			1.73			1.60	
Protein (12 % mb), % (ww)		10.55	5		11.16	6		11.61			11.59)		11.03	
Mixogram peak t <mark>ime, min</mark> (Quadromat)		2.9			3.3			2.7			2.6			3.0	
Individual sampl <mark>es n</mark>	15 44	41 18	71 2	21 19	57 19	41 8	16 3	29 13	17 14	12 4	10 4	2	64 70	137 54	131 24
Composite samples per	B1	B2	В3	B1	B2	В3	B1	B2	В3	B1	B2	В3	B1	B2	B3
grade n = 100	B4	UT	cow	B4		cow	B4	UT	cow	B4	UT	cow	B4	UT	cow
Composite samples n	6	6	5	7	8	6	6	9	5	4	3	2	23	26	18
Composite Samples II	6	4	-	5	4	3	1	4	3	2	1	-	14	13	6
Bühler extraction, %		74.4 74.3	74.8			75.1 74.0									75.7 75.4
Flour colour, KJ		-2.3 -2.8	-2.6			-1.6 -0.6		-1.8 -1.1		-1.0 -1.9	-1.9 -1.6	-1.9 -		-1.9 -1.8	
Farinogram:	61.3	59.6	58.7	63.0	61.7	61.3	63.2	61.3	60.2	62.1	61.3	60.5	62.5	61.0	60.2
Water absorption, %		57.2	_			61.5					60.6	-	59.2	59.8	61.0
Farinogram:	4.4	3.4	2.4	5.1	3.6	2.4	5.0	4.3	3.9	5.1	3.9	3.2	4.9	3.8	2.9
Development time, min	1.8	1.8	-	1.8	2.9	4.9	3.7	4.2	3.8	2.1	3.4	-	2.0	3.0	4.4
Alveogram:	44.0	39.6	35.3	55.6	50.1	44.4	48.9	40.5	38.2	42.6	36.2	41.7	48.6	42.8	39.9
Strength (S), cm ²	31.5	30.6	-	37.4	43.3	52.4	28.1	45.4	41.4	29.1	35.8	-	33.0	39.5	46.9
Alveogram:	0.72	0.73	0.85	1.02	1.02	1.47	0.81	0.65	0.61	0.54	0.64	0.75	0.80	0.78	0.98
P/L	1.02	1.01	-	2.71	1.24	0.82	0.62	0.63	0.52	0.62	0.63	-	1.54	0.93	0.67
Extensogram:	108	91	88	116	111	96	104	97	93	98	82	98	108	98	93
Strength, cm ²	73	82	-	84	97	116	67	109	112	74	104	-	77	97	114
Mixogram peak time,	2.4	2.7	2.8	2.9	2.9	3.2	2.6	2.5	2.8	2.4	2.4	2.7	2.6	2.7	2.9
min	3.0	3.0	-	3.3	2.8	2.8	2.4	2.7	2.8	2.8	2.5	-	3.0	2.8	2.8
Relationship between protein and bread volume	G VG	VG EX	VG -	G P	VG G	G G	VG EX	EX EX	EX EX	EX EX	EX VG	EX -	VG G	VG VG	VG VG
protein and bread volume	VG			<u> </u>	0	0				^	v G			VG	- V G


Ex = Excellent VG = Very Good G = Good P = Poor

WEIGHTED AVERAGE QUALITY OVER 10 SEASONS


REGIONAL QUALITY

WINTER RAINFALL AREA (Western Cape)

Production regions 1 to 6 fall within the winter rainfall area (Western Cape Province). Regions 1 to 4 are the Swartland area and regions 5 and 6 the Rûens area. The Western Cape had the highest production of all the provinces this season, namely 812 500 tons (44 %) (CEC).

The hectolitre mass averaged 77.7 kg/hl (the previous season 77.3 kg/hl). The thousand kernel mass averaged 38.9 gram, which is a little better than the previous season's 38.0 gram. The average falling number was 370 seconds.

The Western Cape had dry winters for a few previous seasons followed by a wet winter during this production season. This resulted in a very low average protein of 10.55 % (12 % mb) compared to the previous two season's 11.13 % and 11.53 %.

The screenings of 1.58 % were lower than the previous season's 1.80 %. The Bühler extraction averaged 74.4 % (average of wheat grades B1 to B4, UT and COW) and the average colour of the flour was -2.5 KJ units. This colour indicates a very white flour that is preferred by millers and bakers. The Free State gave a little higher Bühler extraction (75.0 %), but the flour colour (-1.6 KJ units) were not as good as that of the Western Cape.

The dough quality was the same as in the previous season. The mixogram peak time (Quadromat mill) averaged 2.9 minutes. The average farinogram absorption was 59.1 %. The average strength of the alveogram was 36.7 cm² and the average strength of the extensogram was 88 cm², compared to the Free State (104 cm²) and 100 cm² in the irrigation areas.

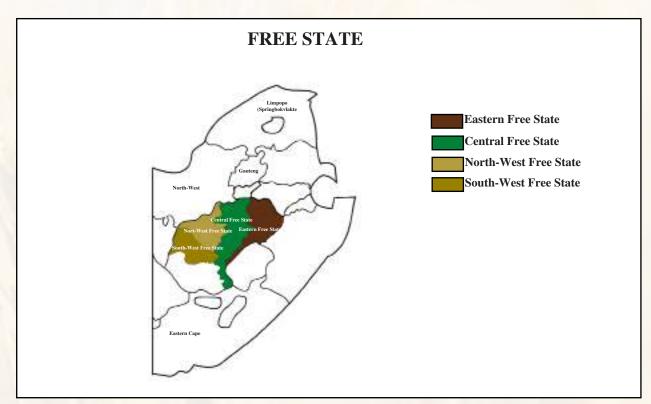
The 100-gram baking test showed a very good relationship between protein content and bread volume.

SUMMER RAINFALL AREA

(Free State)

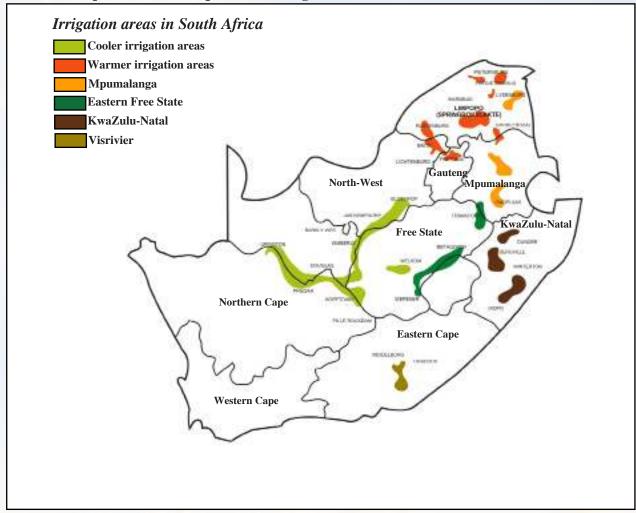
Production regions 21 to 28, which fall within the Free State Province, had the second highest production, namely 516 000 tons (28 %) (CEC). The lower production this season compared to previous seasons, were because of negative planting conditions.

The Free State gave a little better yield of 2.4 tons/ha (2.2 tons/ha the previous season) because of very good spring rain.


The average hectolitre mass (78.7 kg/hl) was the same as the previous seasons's. The physical characteristic thousand kernel mass (38.4 gram) were better than the previous season's 35.9 gram. The average screenings were 1.60 %. The average protein dropped from 11.71 % (12 % mb) to an average of 11.16 %. Although the average falling number was 337 seconds, eight samples gave a falling number lower than 250 seconds.

The mixogram (Quadromat) peak time was 3.3 minutes (3.0 minutes previous season), giving the Free State the longest average mixogram peak time of the different regional qualities.

The average Bühler extraction percentage in the Free State was 75 % (74.5 % previous season). The Kent Jones flour colour was -1.6 KJ units (-1.2 KJ units in previous season). The wheat of the Free State usually yields a little darker flour than the other regions, the three main producing areas yielded a weighted average colour of -1.9 KJ units this season.


The average farinogram water absorption was 61.8 % (61.6 % the previous season), more or less the same as the other regions. The wheat from the Free State usually tends to give a stronger dough than the other regions, with an alveogram strength of 47.7 cm² and an extensogram strength of 104 cm².

The 100-gram baking test showed that the relationship between protein content and bread volume was ranging from very good to poor, between the different grades.

IRRIGATION AREAS

(Northern Cape, North West (plus other irrigation areas).

Production regions 10 - 12, 14 - 20 and 36 falls within the irrigation areas. These areas produced 406 200 tons of wheat this season (22 % of total production) with a average yield of 5.8 tons/hectare.

The average hectolitre mass was 77.8 kg/hl (79.2 kg/hl the previous season) and the thousand kernel mass was 38.8 g (37.6 g the previous season). The average falling number was 372 seconds. The average screenings was 1.58 % and the protein averaged 11.61 % (12 % mb). Five samples gave falling number values of less than 250 seconds (five samples gave a falling number value less than 250 seconds).

The average mixogram (Quadromat) peak time was 2.7 minutes which was more or less the same as the previous season.

The average Bühler extraction percentage was 76.8 (75.6 % during the previous season), with an average flour colour of -1.7 KJ units.

The average farinogram water absorption was 61.3 % (61.2 % during previous season), with an average farinogram development time of 4.3 minutes.

The average alveogram strength was 42.2 cm² and the average P/L was 0.66 (35.2 cm² and 0.81 respectively the previous season).

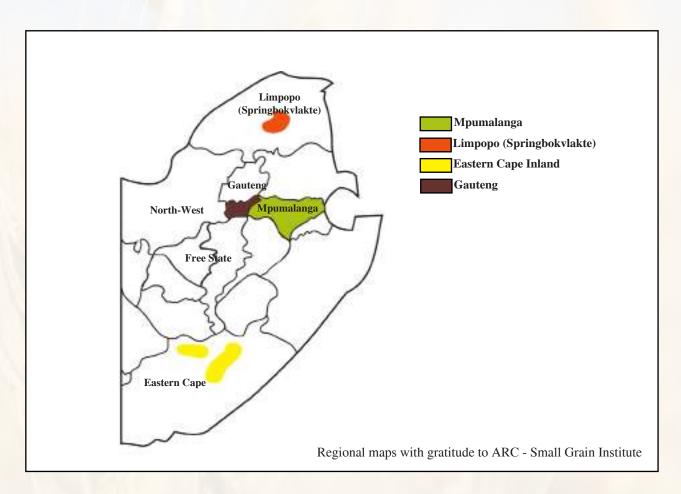
The average extensogram strength was 100 cm². The relationship between protein content and bread volume was shown to be excellent by the 100-gram baking test.

OTHER SUMMER RAINFALL AND IRRIGATION AREAS

(Mpumalanga, Limpopo, Gauteng and Eastern Cape)

Other summer rainfall regions, excluding the Free State, are mainly regions 29,30,32,33 (Mpumalanga), 34 (Gauteng) and 35 (Limpopo). They produced in total 109 200 tons during this season (6 % of the total production). No samples were received from the Eastern Cape region.

The average hectolitre mass was 77.8 kg/hl (79.1 kg/hl the previous season) and the average thousand kernel mass was 38.9 g (37.8 g the previous season). This is more or less the same as in the Western Cape and irrigation areas.


The average falling number was 391 seconds. The average percentage screenings was 1.73 %. The average protein content was 11.59 % (12 % mb), which is more or less the same than the previous year.

The average mixogram (Quadromat) peak time was 2.6 minutes (2.7 minutes the previous season).

The average Bühler extraction was 76.9 %, with an average colour of -1.6 KJ units (75.6 % and -1.3 KJ units the previous season). The farinogram average water absorption was 60.6 % (61.8 % the previous season) and had an average development time of 3.8 minutes.

The average alveogram strength was 38.0 cm², with an average P/L value of 0.62, and the average extensogram strength was 90 cm².

The 100-gram baking test showed an excellent relationship between protein content and bread volume.

South African Winter Cereal Production

Wheat is by far the biggest winter cereal crop planted in South Africa. Other winter crops are barley, canola and sweet lupines. Summer field crops are better suited for the South African climatic conditions. Maize being the largest of the different crops, followed by wheat, then sunflower seed, soya-beans, sorghum, barley, groundnuts, dry beans, canola and sweet lupines. The annual South African wheat crop is about one quarter of the annual maize crop.

South Africa (made up of nine provinces) is divided into 36 crop production regions with wheat planted in about 32 of these regions. These production regions are described on pages 16 to 44 (on the top of the left page) giving the specific intake silo names for each region.

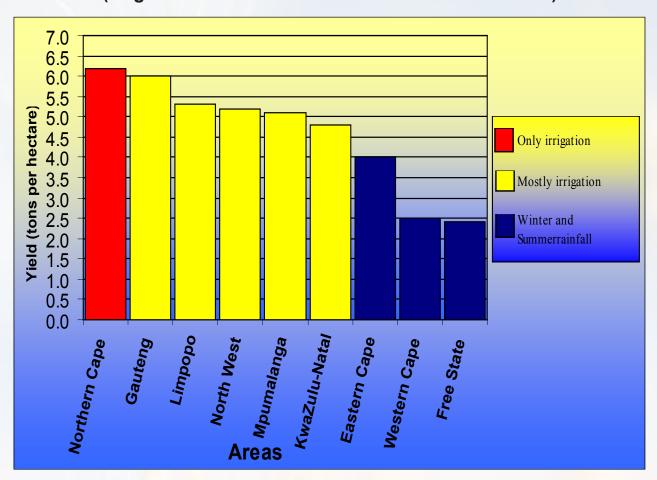
The three main wheat producing provinces are Western Cape (winter rainfall), Free State (summer rainfall) and the Northern Cape (irrigation). A fourth province worth mentioning is the North-West (mainly irrigation). See map on page 48.

The Western Cape province produced 812 500 tons and the Free State province followed with 516 000 tons. (Final estimate by the Crop Estimates Committee, CEC). These two provinces were responsible for 72 % of the total wheat produced.

The yield in the main production areas ranged from 6.2 tons per hectare in the Northern Cape (irrigation area), 2.4 tons per hectare in the Free State to 2.5 tons per hectare for the Western Cape. Gauteng gave a yield of 6.0 tons per hectare, Limpopo with 5.3 tons per hectare followed by North West, Mpumalanga, KwaZulu-Natal and the Eastern Cape with respectively 5.2, 5.1, 4.8 and 4.0 tons per hectare.

The local production is not enough for domestic requirements and South Africa has to import wheat to meet its domestic consumption of approximately 2.9 million tons every year.

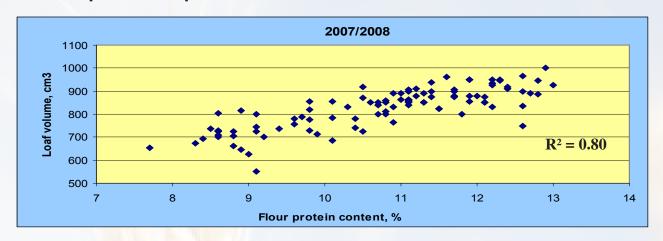
South Africa has three major wheat-breeding programs. The wheat industry has during the beginning of 2008 "relaxed" some specifications in the release criteria document containing the quality evaluation norms. The South African breeders can only release a new cultivar or an introduction cultivar if it has better agronomical as well as better flour quality characteristics than the cultivars planted commercially in a specific area. Producers continuously try to improve the wheat yield and quality by selecting the best cultivars that can be grown commercially in a specific area. Grading standards are also set high to ensure adequate quality control.

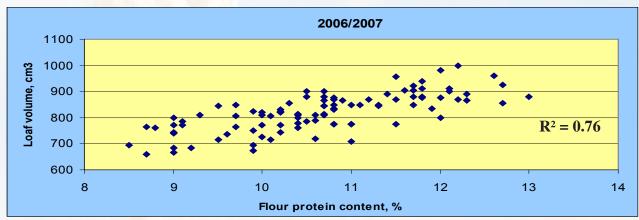

Sampling procedure for the annual quality survey

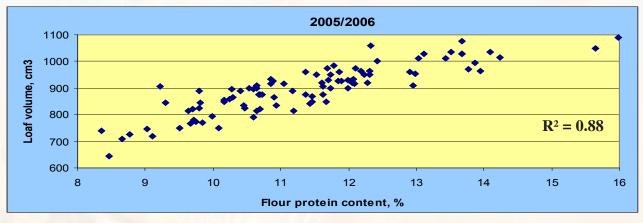
During the harvest season, a sample of each delivery of wheat is taken according to the prescribed Wheat regulation. A representative sample needs to be drawn for grading purposes before the wheat is taken in at the silo. Of each of these grading samples, about 200 grams is thrown into a 100 kg bin according to grade and class at each silo. The 100 kg bin is divided and a 5 kg sample is send to the SAGL for the annual quality survey.

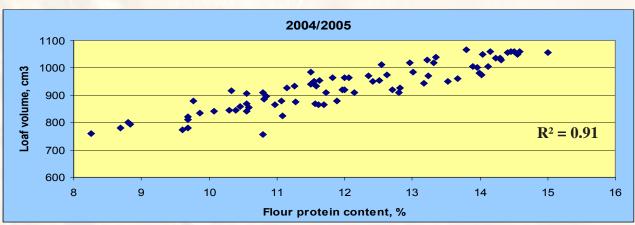
After receiving these representative wheat crop samples from all over the country, the SAGL select 480 samples representing the wheat production of wheat for that specific region/province.

South Africa is the only wheat producing country known-of that produces this kind of comprehensive quality information on their national wheat crop and also have it available to the public.


Average yield per area (Irrigation versus summer and winter rainfall areas)



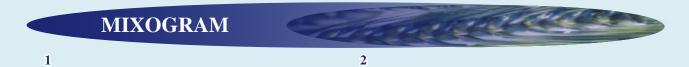

Average quality data of imported wheat during the 2006 / 2007 season (previous season)


	Argentina	Bermuda	Canada	Germany	USA	RSA
Protein (12 % mb)	12.21	12.51	13.30	12.07	11.91	11.45
Hlm Kg/hl	77.6	77.0	79.5	77.7	76.6	78.4
Screenings (%)	3.40	3.27	3.22	2.91	3.72	1.81
Extraction (%)	73.6	73.6	74.9	75.1	73.5	75.1
Flour colour KJ	0.2	0.7	-1.1	0.4	0.5	-1.2
Farinogram						
Waterabsorption (%)	60.5	57.2	62.5	60.3	57.4	61.4
Dev. Time (min)	2.1	2.2	4.3	2.3	2.2	3.4
Alveogram						
Strength (cm²)	47.7	43.0	52.7	41.9	39.8	36.8
Mixogram (Bühler)						
Peak time (min)	4.1	3.9	3.1	3.7	4.1	2.6
Baking test 100g						
Volume (cm³)	785	846	901	839	804	816
Samples tested	27	5	14	10	27	480
Tonnage	310 524	- L	153 694	80 649	232 266	2 105 000

Straight - dough optimized 100g Baking test Comparison of protein vs loaf volume over the last four seasons

Comparison of Flour Quality over the last four seasons

Flour Quality 2007/2008 season								
Flour protein (12 % mb)	10.4	Farinogram water abs, (%)	60.8					
Bread volume 100g (cm³)	827	Farinogram dev. time (min.)	3.6					
Mixogram (Bühler) peak time (min)	2.8	Alveogram strength (cm²)	41.9					
Extensogram strength (cm²)	97	Alveogram P/L	0.94					
		1						


Flour Quality 2006/2007 season									
Flour protein (12 % mb) 10.6 Farinogram water abs, (%)									
Bread volume 100g (cm³)	816	Farinogram dev. time (min.)	3.4						
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm²)	36.8						
Extensogram strength (cm²)	82	Alveogram P/L	0.93						

Flour Quality 2005/2006 season									
Flour protein (12 % mb) 11.5 Farinogram water abs, (%)									
Bread volume 100g (cm³)	906	Farinogram dev. time (min.)	5.0						
Mixogram (Bühler) peak time (min)	2.5	Alveogram strength (cm²)	40.7						
Extensogram strength (cm²)	108	Alveogram P/L	0.81						

Flour Quality 2004/2005 season									
Flour protein (12 % mb)	12.0	Farinogram water abs, (%)	61.0						
Bread volume 100g (cm³)	930	Farinogram dev. time (min.)	5.1						
Mixogram (Bühler) peak time (min)	2.6	Alveogram strength (cm²)	39.6						
Extensogram strength (cm²)	115	Alveogram P/L	0.62						

WINTER RAINFALL WHEAT Western Cape Province

PRODUCTION REGION	(1) Namaq	ualand					(2) Swartland Western Region						
Intake silos	Bitterfor Graafw Landpla Vanrhyr Vreden	ater aas nsdorp					Bergrivi Darling Koperfo Vredenb	er ntein					
WHEAT	N												
D. (1.1) (100() (1	ave		min	max		stdev	ave		min	max		stdev	
Protein (12% mb), % Falling number, sec	11.5 397		9.4 363	13.4 421		1.8	10.6 374		9.2	13.6 407		0.9 23.1	
1000 Kernel mass (13% mb), g	42.1		37.7	48.9		4.8	36.5		29.0	41.0		2.4	
Hectolitre mass (dirty), kg/hl	77.4		75.6	79.2		1.2	75.0		70.1	77.8	3	1.8	
Screenings (<1.8mm), %	1.7		1.0	2.6		0.5	3.2		2.0	20.2		3.7	
Total damaged kernels, %	0.5		0.4	0.7		0.1	0.2		0.0	0.6		0.1	
Number of samples				6						23			
CULTIVARS													
			015		3.2				027		1.5		
cultivars			027	16.2 12.7					T 88		7.4		
with highest % occurrence			T 88		2.0		SST 015 15.2 SST 57 9.8						
occurrence		SST 57 8.8 SST 035									.0		
Number of samples				6			23						
MIXOGRAM (Quadromat)													
i i i	ave		min	max		stdev	ave		min	max	(stdev	
Peak time, min	2.7		2.2	3.3		0.5	3.2		2.5	3.7		0.3	
Tail height (6min), mm Number of samples	48		44	51 6		3.2	44		40	47 23		2.1	
Number of Samples				0						2.3		-	
BÜHLER EXTRACTION, %	B1 74.7	B2 73.8	В3	B4 73.3	UT	COW	B1	B2 73.6	B3 74.7	B4 73.3	UT 73.4	cow	
FLOUR													
Protein (12% mb), %	12.7	10.9		8.5				10.5	9.6	8.8	9.1		
Colour, KJ	-2.5	-2.2		-2.9				-0.9	-2.3	-2.6	-2.8		
FARINOGRAM Water absorption (14% mb), %	62.6	60.6		57.7				59.4	58.1	57.1	57.2		
Development time, min	5.2	3.8		1.5				2.8	2.2	1.8	1.8		
Stability, min Mixing tolerance index, BU	12.2 30	7.5 43		4.5				6.8 41	6.3	4.3 58	4.7 57		
wixing tolerance index, Bo	- 30	73		30					72	30	37		
EXTENSOGRAM (45 min pull)													
Area, cm2													
MA. Co. C. L. C. L. Bill	110	85		83				68	82	72	79		
Maximum height, BU	375	330		395				315	385	360	370		
Extensibility, mm													
Extensibility, mm ALVEOGRAM	375 206	330 180		395 143				315 145	385 144	360 136	370 146		
Extensibility, mm	375	330		395				315	385	360	370		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	375 206 48.8 82 136	330 180 43.7 91 110		395 143 33.3 82 84				315 145 34.6 84 93	385 144 37.6 82 100	360 136 31.0 77 87	370 146 31.8 79 82		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	375 206 48.8 82	330 180 43.7 91		395 143 33.3 82				315 145 34.6 84	385 144 37.6 82	360 136 31.0 77	370 146 31.8 79		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	375 206 48.8 82 136	330 180 43.7 91 110		395 143 33.3 82 84				315 145 34.6 84 93	385 144 37.6 82 100	360 136 31.0 77 87	370 146 31.8 79 82		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	375 206 48.8 82 136	330 180 43.7 91 110		395 143 33.3 82 84				315 145 34.6 84 93	385 144 37.6 82 100	360 136 31.0 77 87	370 146 31.8 79 82		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	375 206 48.8 82 136 0.60	330 180 43.7 91 110 0.83		395 143 33.3 82 84 0.98				315 145 34.6 84 93 0.89	385 144 37.6 82 100 0.83	360 136 31.0 77 87 0.88	370 146 31.8 79 82 0.96		
Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	375 206 48.8 82 136 0.60	330 180 43.7 91 110 0.83		395 143 33.3 82 84 0.98				315 145 34.6 84 93 0.89	385 144 37.6 82 100 0.83	360 136 31.0 77 87 0.88	370 146 31.8 79 82 0.96		

WINTER RAINFALL WHEAT Western Cape Province

PRODUCTION REGION	(3) Swartla Centra	and I Region					(4) Swartland Eastern Region							
Intake silos	Eendek Klipheu Koringb Malmes Moorree Moravia Piketbe Pools Ruststa	wel perg sbury esburg a rg				Ceres Gouda Halfmanshof Leliedam Porterville Riebeeck-Wes								
WHEAT						at day.	0.10					ot dov.		
Protein (12% mb), %	10.4		min 8.7	max 12.6		o.9	10.5		min 8.7	max 14.3		stdev 1.1		
Falling number, sec	373		316	421		22.5	366		322	410		24.0		
1000 Kernel mass (13% mb), g	38.5	5	33.0	42.6		2.0	38.1		33.2	44.3	3	2.8		
Hectolitre mass (dirty), kg/hl	77.8		74.3	81.0		1.6	78.1		74.5	81.8	3	1.9		
Screenings (<1.8mm), %	1.0		0.1	3.4		1.0	1.4		0.2	3.4		1.0		
Total damaged kernels, %	0.4		0.0	3.7		0.5	0.3		0.0	1.0		0.3		
Number of samples				8			35							
CULTIVARS		SST	027	40).5			SST	027	41	1.5			
cultivars			T 88		3.4		SST 88 22.5							
with highest %			015	22	2.8		SST 015 18.5							
occurrence		SS	T 57	8			SS	T 57	12	2.8				
		SS	T 65	1	.5			SST	035	2	.3			
Number of samples			7	78					3	35				
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev		
Peak time, min	3.0		2.1	4.2		0.4	3.0		2.3	3.8		0.4		
Tail height (6min), mm	46		38	53		2.9	45		40	52		2.9		
Number of samples			7	8					3	35				
BÜHLER EXTRACTION, %	B1 74.4	B2 74.4	B3 74.5	B4 74.0	UT 74.5	cow	B1 74.2	B2 74.4	B3 74.2	B4 74.6	UT 74.5	cow		
FLOUR														
Protein (12% mb), %	12.1	10.8	9.6	8.6	8.4		11.8	10.7	9.4	8.3	7.7			
Colour, KJ	-2.5	-2.8	-2.7	-3.0	-3.1		-2.3	-2.9	-2.9	-3.0	-2.8			
FARINOGRAM														
Water absorption (14% mb), %	61.1	58.7	58.9	58.5	56.4		59.4	58.4	57.8	57.6	57.3			
Development time, min Stability, min	9.4	4.0 8.7	1.8 5.4	1.8 5.3	1.9 5.5		5.2 10.5	4.2 8.3	2.3 6.8	1.8 4.9	1.3 3.0			
Mixing tolerance index, BU	29	33	5.4	5.3	5.5		29	37	36	56	68			
EXTENSOGRAM (45 min pull)														
Area, cm2	105	96	79	71	91		105	112	100	77	77			
Maximum height, BU	380	400	460	365	420		405	425	410	400	410			
Extensibility, mm	193	166	155	135	151		182	184	166	138	128			
ALVEOGRAM Strength (S), cm2	36.5	43.7	36.1	32.7	28.7		45.6	39.9	33.5	29.7	30.6			
Stability (P), mm	87	79	86	88	74		85	75	77	82	87			
Distensibility (L), mm	122	123	91	79	83		120	127	99	73	69			
Configuration ratio (P/L)	0.71	0.65	0.94	1.11	0.89		0.71	0.59	0.78	1.12	1.25			
MIXOGRAM Peak time, min	2.5	2.8	2.8	2.8	3.3		2.8	2.8	2.8	2.9	3.0			
100g BAKING TEST														
Loaf volume, cm3 Evaluation	850	860	755 1	700	695 0		800	840	735	675	655 0			

WINTER RAINFALL WHEAT Western Cape Province

PRODUCTION REGION	(5) Rûens Wester	n Regioı	1				(6) Rûens Eastern Region							
Intake silos	Bredasc Caledor Klipdale Krige Napier Protem Rietpoe Villiersd	n ·					Albertinia Ashton Camfer Heidelberg Karringmelksrivier Kleinberg Protem Riversdal Swellendam							
WHEAT														
	ave	,	min	max		stdev	ave		min	max	(stdev		
Protein (12% mb), %	11.0		9.6	12.8		1.0	10.5		8.8	12.2		0.9		
Falling number, sec	370		344 390			13.0	362		291	413		23.3		
1000 Kernel mass (13% mb), g	40.9		38.4	43.5		1.4	40.9		35.8	46.5		2.5		
Hectolitre mass (dirty), kg/hl	78.7		77.7	80.4		0.8	78.5		75.8	79.9)	1.2		
Screenings (<1.8mm), % Total damaged kernels, %	0.1		0.7	2.1 0.4		0.4	1.8		0.5	3.5 0.8		0.8		
Number of samples	0.1			15		0.2	0.3			34		0.2		
Number of SampleS	+		-	3) 4				
CULTIVARS		SST	SST 027 33.4					SST	027	31	1.3			
cultivars			SST 88 25.3					SST 88 30.9						
with highest %			015		1.1		SST 015 27.0							
occurrence			T 57		2.9				Г 57		.9			
		PAN	3408	2	.0			SST	035	2	.0			
Number of samples			1	15					3	34				
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev		
Peak time, min	2.5		2.3	2.8		0.2	2.8		2.4	3.5		0.2		
Tail height (6min), mm	48		42	55		3.4	47		43	51		2.1		
Number of samples			1	5			34							
	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	cow		
BÜHLER EXTRACTION, %	75.3	75.0	75.4	74.8	01	COW	74.1	74.9	75.0	75.4	74.9	COW		
FLOUR														
Protein (12% mb), %	12.4	10.7	9.8	8.6			11.7	10.8	9.8	8.8	8.6			
Colour, KJ	-2.4	-2.5	-2.6	-2.4			-2.5	-2.3	-2.5	-2.2	-2.4			
FARINOGRAM					11			00.4		50.4				
Water absorption (14% mb), %	62.2	60.1	59.3	58.5			61.4	60.1	59.3	58.1	58.0	-		
Development time, min Stability, min	4.8 8.3	7.1	2.8 6.3	5.0			2.4 8.0	3.5 7.4	2.7 6.9	1.7 5.7	2.2 5.9	-		
Mixing tolerance index, BU	33	32	48	58			29	38	35	46	45			
The state of the s														
EXTENSOGRAM (45 min pull)														
Area, cm2	123	93	93	65			98	90	85	70	81			
Maximum height, BU	395	350	365	320			360	360	385	360	360	 		
Extensibility, mm			172	139			193	171	150	135	153	_		
	210	185	112	100										
ALVEOGRAM	210						40.7	20.4	25.0	20.0	24.2			
Strength (S), cm2	210	36.1	33.9	30.3			42.7	39.4	35.3	32.0	31.3			
Strength (S), cm2 Stability (P), mm	210 46.2 90	36.1 75	33.9 79	30.3 83			90	85	85	82	80			
Strength (S), cm2 Stability (P), mm Distensibility (L), mm	210 46.2 90 122	36.1 75 117	33.9 79 101	30.3 83 79			90 108	85 109	85 94	82 85	80 86			
Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	210 46.2 90	36.1 75	33.9 79	30.3 83			90	85	85	82	80			
Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	46.2 90 122 0.73	36.1 75 117 0.64	33.9 79 101 0.78	30.3 83 79 1.05			90 108 0.83	85 109 0.79	85 94 0.91	82 85 0.97	80 86 0.92			
Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	210 46.2 90 122	36.1 75 117	33.9 79 101	30.3 83 79			90 108	85 109	85 94	82 85	80 86			
Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	46.2 90 122 0.73	36.1 75 117 0.64	33.9 79 101 0.78	30.3 83 79 1.05			90 108 0.83	85 109 0.79	85 94 0.91	82 85 0.97	80 86 0.92			

MIXOGRAM 5

FARINOGRAM 5


IRRIGATION WHEAT Vaal and Orange river area

	(10)						(11)								
PRODUCTION REGION	Griqual	and - W	est				Vaalharts								
Intake silos	Britstow Douglas Haveng Maryda Modder Oranjer Prieska Rietrivie Upingto	s a Brug le rivier ivierstasi	ie			Barkly-Wes Hartswater Jan Kemp Magogong Taung									
WHEAT		Ш													
WILAI	ave		min	max	(stdev	ave		min	max	(stdev			
Protein (12% mb), %	11.0		9.6	12.4		0.8	11.3		10.2	12.	1	0.6			
Falling number, sec	413		371	497		31.5	388		344	423		25.8			
1000 Kernel mass (13% mb), g	39.8		32.2	42.7		2.5	36.7		34.5	39.		1.5			
Hectolitre mass (dirty), kg/hl	79.4		77.2	81.5		1.0	78.2		75.6	79.5		1.5			
Screenings (<1.8mm), % Total damaged kernels, %	1.3 0.4		0.2	7.3	-	1.6 0.2	3.0 0.8		0.1	4.2		0.6			
Number of samples	0.4			17		0.2	0.0		0.1	9		0.9			
Number of Gamples															
CULTIVARS															
			N 826		2.2				N 826		3.1				
cultivars			806		6.4 1.2			SST	7.2						
with highest %			3434				uzi		3.1						
occurrence			uzi Г 876		.8		<u> </u>		kodil 7 876		.9				
Number of samples		- 001		17	. !				070	9					
MIXOGRAM (Quadromat)															
Peak time, min	2.5		min 2.0	max 2.8		stdev 0.2	2.4		min 2.2	ma : 2.7		stdev 0.2			
Tail height (6min), mm	46		39	52		3.0	50		45	55		3.4			
Number of samples	- 10			17		0.0	- 00			9		0.1			
BÜHLER EXTRACTION, %	B1 76.0	B2 76.9	B3 76.9	B4 77.9	UT	cow	B1	B2 77.0	B3	B4	UT 76.6	COW			
FLOUR															
Protein (12% mb), %	12.0	11.1	10.1	8.9				10.9			11.4				
Colour, KJ	-2.2	-2.5	-3.0	-3.0				-2.3			-2.1				
FARINOGRAM	20.0	04.5	50.0					04.4			0.1-				
Water absorption (14% mb), %	62.2	61.5	58.8	57.8				61.1			61.7				
Development time, min Stability, min	6.9	3.5 6.3	3.8 6.0	3.7 4.9		-		3.9 5.9			4.5 6.5				
Mixing tolerance index, BU	49	44	55	65				49			52	\vdash			
The state of the s															
EXTENSOGRAM (45 min pull)															
Area, cm2	69	96	76	67				79			80				
Maximum height, BU	260	335	325	310				315			310				
Extensibility, mm	185	190	166	148				172			179	-			
ALVEOGRAM Strongth (S) cm ²	41.7	37.5	32.0	28.1				35.9			38.4				
Strength (S), cm2 Stability (P), mm	83	37.5 81	68	67				35.8 78			80				
Distensibility (L), mm	117	106	117	109				112			120				
Configuration ratio (P/L)	0.71	0.77	0.58	0.62				0.70			0.67				
comgardadiridad (172)	0.71	0.11	0.00	0.02				0.70			0.07				
MIXOGRAM															
		0.0	0.0	2.4				2.3			2.3				
Peak time, min	2.3	2.3	2.6	2.4				2.0		+	2.0	+			
Peak time, min	2.3	2.3	2.6	2.4				2.0			2.0				
Peak time, min 100g BAKING TEST															
Peak time, min	880 1	855 0	855 0	815				890			900				

FARINOGRAM 10 11

MAINLY IRRIGATION North-West Province

PRODUCTION REGION	(12) North-W		n				(14) North-West Southern Region							
Intake silos	Blouban Buhrman Kameel Kraaipan Madibog Mafiken Mareets Piet Plet Springbo Vergeleë Vryburg Vryhof	k nnsdrif n go g ane ssis okpan				Amalia Barberspan Delareyville Excelsior Geysdorp Hallat's Hope Migdol Nooitgedacht Schweizer-Reneke Taaibospan								
WHEAT		Н							1					
Destain (400/ mb) 0/	ave		min	max		stdev	ave		min	max		stdev		
Protein (12% mb), % Falling number, sec	11.8 363		11.4 284	12.4 404		0.6 68.4	12.1 381		11.1 358	12.5 412		20.4		
1000 Kernel mass (13% mb), g	34.4		32.6	36.1		1.8	37.3		34.7	42.8		2.8		
Hectolitre mass (dirty), kg/hl	74.9		70.8	79.0		4.1	74.7		71.7	78.4		2.7		
Screenings (<1.8mm), %	5.4		4.6	7.0		1.3	1.1		0.8	1.5		0.2		
Total damaged kernels, %	0.5		0.2	0.7		0.2	0.4		0.2	0.7		0.2		
Number of samples				3					6	5				
CULTIVARS		CRI	N 826	52	2.3			SST	822	31	1.2			
cultivars			T 806	30				1 826		3.8				
with highest %		SST	Г 876	13	3.7			SST	12	2.7				
occurrence		SST	Г 822	3	.3			D	uzi	8	.8			
Number of samples				3				Kar	iega 6		.8			
Number of samples				3										
MIXOGRAM (Quadromat)														
Deal Seconds	ave		min	max		stdev	ave		min	max		stdev		
Peak time, min	2.8		2.8	2.9		1.5	3.0 51		2.7 47	3.2		0.2		
Tail height (6min), mm Number of samples	49			3		1.5	51		41			2.5		
rumber of samples					_									
BÜHLER EXTRACTION, %	B1	B2	В3	B4	UT 76.2	COW	B1 76.4	B2 76.1	B3 75.9	B4	UT	COW		
FLOUR														
Protein (12% mb), %					11.7		11.6	11.3	12.2					
Colour, KJ					-0.7		-2.1	-1.3	-2.1					
FARINOGRAM														
Water absorption (14% mb), %					61.4		61.4	59.9	62.5					
Development time, min					2.7		3.2	4.4	5.0					
Stability, min					6.1		7.5	7.3	8.2					
Mixing tolerance index, BU					38		34	44	42					
EVTENSOCRAM (45 coin coul)														
EXTENSOGRAM (45 min pull) Area, cm2					90		80	82	92					
Maximum height, BU		_			325		310	300	330					
Extensibility, mm					194		177	195	196					
ALVEOGRAM Strongth (S) am2					39.1		39.4	35.3	47.9					
Strength (S), cm2 Stability (P), mm					70		76	66	83					
Distensibility (L), mm					139		130	135	137					
Configuration ratio (P/L)					0.50		0.59	0.49	0.60			_		
					0.00		3.55	5.10	0.00					
MIXOGRAM														
Peak time, min					2.5		2.6	2.7	2.8					
100g BAKING TEST														
Loaf volume, cm3					880		960	890	925					
Evaluation					1		0	0	0					

FARINOGRAM 12 14

MAINLY IRRIGATION North-West Province

PRODUCTION REGION	(15) North-V South-I	Vest Eastern	Region				(17) North-West Central Northern Region (Ottosdal)							
Intake silos	Bloemh Christia Hertzog Hoopsta Kingswe		Bospoort Hartbeesfontein Kleinharts Melliodora Ottosdal Rostrataville Vermaas Werda											
WHEAT				-				_			-			
Parts: (400/b) 0/	ave		min	max		stdev	ave		min	max		stdev		
Protein (12% mb), %	400		10.6 299	13.5 437		1.0 41.3	11.8 399		11.6 378	12.1 412		18.4		
Falling number, sec 1000 Kernel mass (13% mb), g	37.2		25.6	437		5.0	37.0		36.9	37.0		0.1		
Hectolitre mass (dirty), kg/hl	77.6		75.2	79.5		1.7	77.1		75.5	79.3		2.0		
Screenings (<1.8mm), %	1.1		0.2	5.1		1.5	1.6		1.0	2.2		0.6		
Total damaged kernels, %	0.6		0.1	1.1		0.4	0.4		0.1	0.6		0.2		
Number of samples	0.0			0						3				
- Campio							1							
CULTIVARS		CRN	l 826	43	3.9			CRN	l 826	45	5.3			
cultivars		SST	806	24	.3			SST	822	34	1.7			
with highest %		PAN	3118	14	.7			SST	876	12	2.7			
occurrence		SST	835	5.	.5		SST 806 5.7							
		SST	935	4.	.4		PAN 3434 1.7							
Number of samples			1	0						3				
MIXOGRAM (Quadromat)														
Dool time and	ave		min	max		stdev	ave		min	max	(stdev		
Peak time, min	3.0		2.4 47	3.5 59		0.3 4.0	2.9		2.8 50	3.0 51		0.1		
Tail height (6min), mm Number of samples	51			0		4.0	30			3		0.6		
Number of Samples			<u>'</u>	<u> </u>										
	B1	B2	В3	B4	UT	cow	B1	B2	В3	B4	UT	cow		
BÜHLER EXTRACTION, %	75.1	77.3	77.5		74.2			76.8						
FLOUR	40.0	44.4	40.5		44.7			44.0						
Protein (12% mb), % Colour, KJ	13.0 -2.0	-2.0	10.5 -2.4		11.7 -1.1			11.9 -1.8						
Coloul, KJ	-2.0	-2.0	-2.4		-1.1			-1.0						
FARINOGRAM														
Water absorption (14% mb), %	65.1	61.0	59.8		60.0			61.0						
Development time, min	0.0	4.8	4.2					4.7						
Ctobility min	6.8		4.2		4.8			4.1						
Stability, min	16.2	7.5	6.2		10.5			8.7						
Mixing tolerance index, BU														
Mixing tolerance index, BU	16.2	7.5	6.2		10.5	7		8.7						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	16.2 19	7.5 45	6.2 54		10.5 35	/		8.7 36						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	16.2 19 125	7.5 45 96	6.2 54		10.5 35 128	/		8.7 36						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	16.2 19 125 425	7.5 45 96 365	6.2 54 100 315		10.5 35 128 485	/		8.7 36 125 410						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	16.2 19 125	7.5 45 96	6.2 54		10.5 35 128			8.7 36						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	16.2 19 125 425	7.5 45 96 365	6.2 54 100 315		10.5 35 128 485			8.7 36 125 410						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	16.2 19 125 425	7.5 45 96 365	6.2 54 100 315		10.5 35 128 485			8.7 36 125 410						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	16.2 19 125 425 206	7.5 45 96 365 184	6.2 54 100 315 222		10.5 35 128 485 181			8.7 36 125 410 212						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	16.2 19 125 425 206	7.5 45 96 365 184	6.2 54 100 315 222		10.5 35 128 485 181 55.7			8.7 36 125 410 212						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	16.2 19 125 425 206 66.7 121	7.5 45 96 365 184 43.7 86	6.2 54 100 315 222 34.4 68		10.5 35 128 485 181 55.7			8.7 36 125 410 212 50.2 79						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	16.2 19 125 425 206 66.7 121	7.5 45 96 365 184 43.7 86 116	6.2 54 100 315 222 34.4 68 123		10.5 35 128 485 181 55.7 97 124			8.7 36 125 410 212 50.2 79 156						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	16.2 19 125 425 206 66.7 121 105 1.14	7.5 45 96 365 184 43.7 86 116 0.75	6.2 54 100 315 222 34.4 68 123 0.55		10.5 35 128 485 181 55.7 97 124 0.79			8.7 36 125 410 212 50.2 79 156 0.51						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	16.2 19 125 425 206 66.7 121	7.5 45 96 365 184 43.7 86 116	6.2 54 100 315 222 34.4 68 123		10.5 35 128 485 181 55.7 97 124			8.7 36 125 410 212 50.2 79 156						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	16.2 19 125 425 206 66.7 121 105 1.14	7.5 45 96 365 184 43.7 86 116 0.75	6.2 54 100 315 222 34.4 68 123 0.55		10.5 35 128 485 181 55.7 97 124 0.79			8.7 36 125 410 212 50.2 79 156 0.51						
Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	16.2 19 125 425 206 66.7 121 105 1.14	7.5 45 96 365 184 43.7 86 116 0.75	6.2 54 100 315 222 34.4 68 123 0.55		10.5 35 128 485 181 55.7 97 124 0.79			8.7 36 125 410 212 50.2 79 156 0.51						

FARINOGRAM 15 17

MAINLY IRRIGATION North-West Province

PRODUCTION REGION	(18) North-V Central		(Venters	dorp)		(19) North-West Central Region (Lichtenburg)							
Intake silos	Bodenst Bucking Coligny Enselsp Makoksl Potchefs Venterso	ham ruit kraal stroom					Grootpa Halfpad Hibernia Lichtenl Lottieha Lusthof	a ourg ilte					
MULEAT		Ш											
WHEAT	ave		min	max	;	stdev	ave)	min	max		stdev	
Protein (12% mb), %	11.1		10.4	11.9		0.7	11.4		10.5	12.1		0.7	
Falling number, sec	365		349	411		23.2	385		348	413		23.5	
1000 Kernel mass (13% mb), g Hectolitre mass (dirty), kg/hl	38.4 77.3		37.5 76.7	39.1 78.3		0.5	40.1 77.6		32.1 74.2	79.3		1.7	
Screenings (<1.8mm), %	0.6		0.5	0.7		0.6	1.3		0.3	3.1		0.8	
Total damaged kernels, %	0.7		0.5	1.1		0.1	0.5		0.3	1.1		0.2	
Number of samples				6						10			
CULTIVARS													
	-		806	53.					806		5.0		
cultivars	-		1 826	40.				1 826	33	3.9 7.2			
with highest % occurrence			ants 876	1.8					876	6			
occurrence		331	070	1.0	<u> </u>				835		.5		
Number of samples				5						10			
MIXOGRAM (Quadromat)													
i i	ave		min	max	:	stdev	ave		min	max		stdev	
Peak time, min	2.8		2.7	3.0		0.1	2.7		2.3	3.0	:	0.2	
Peak time, min Tail height (6min), mm			2.7 47	3.0 52					2.3	3.0 51	:		
Peak time, min	2.8		2.7	3.0 52		0.1	2.7		2.3	3.0		0.2	
Peak time, min Tail height (6min), mm	2.8	B2	2.7 47	3.0 52	UT	0.1	2.7	B2	2.3	3.0 51	UT	0.2	
Peak time, min Tail height (6min), mm	2.8	B2 78.0	2.7 47	3.0 52		1.7	2.7 49		2.3	3.0 51		1.6	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	2.8		2.7 47 (B3	3.0 52		1.7	2.7 49 B1	B2	2.3	3.0 51		0.2 1.6	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.8	78.0	2.7 47 B3 77.8	3.0 52		1.7	2.7 49 B1 77.3	B2 78.3	2.3	3.0 51		0.2 1.6 COW 76.8	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	2.8	78.0	2.7 47 B3 77.8	3.0 52		1.7	2.7 49 B1 77.3	B2 78.3	2.3	3.0 51		0.2 1.6 COW 76.8	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.8	78.0	2.7 47 B3 77.8	3.0 52		1.7	2.7 49 B1 77.3	B2 78.3	2.3	3.0 51		0.2 1.6 COW 76.8	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.8	78.0 11.4 -1.4	2.7 47 B3 77.8 9.8 -1.8	3.0 52		1.7	2.7 49 B1 77.3 11.9	B2 78.3 10.8 -1.9	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	2.8	78.0 11.4 -1.4 62.8	2.7 47 83 77.8 9.8 -1.8	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8	B2 78.3 10.8 -1.9 61.0	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.8	78.0 11.4 -1.4 62.8 5.0	2.7 47 83 77.8 9.8 -1.8 60.0 3.5	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8	82 78.3 10.8 -1.9 61.0 5.0	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	2.8	78.0 11.4 -1.4 62.8 5.0 6.5	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7	10.8 -1.9 61.0 5.0 6.4	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.8	78.0 11.4 -1.4 62.8 5.0	2.7 47 83 77.8 9.8 -1.8 60.0 3.5	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8	82 78.3 10.8 -1.9 61.0 5.0	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	2.8	78.0 11.4 -1.4 62.8 5.0 6.5	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7	10.8 -1.9 61.0 5.0 6.4	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.8	78.0 11.4 -1.4 62.8 5.0 6.5	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7	10.8 -1.9 61.0 5.0 6.4	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5 46	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61	82 78.3 10.8 -1.9 61.0 5.0 6.4 62	2.3	3.0 51		0.2 1.6 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59	2.7 47 60.0 3.5 6.5 46	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61	82 78.3 10.8 -1.9 61.0 5.0 6.4 62	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5 46	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61	82 78.3 10.8 -1.9 61.0 5.0 6.4 62	2.3	3.0 51		0.2 1.6 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204	2.7 47 (83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218	61.0 5.0 6.4 62 100 345 202	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204	2.7 47 (83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218	61.0 61.0 5.0 6.4 62 100 345 202	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204	2.7 47 (83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218	61.0 5.0 6.4 62 100 345 202	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85	2.7 47 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218	82 78.3 10.8 -1.9 61.0 5.0 6.4 62 100 345 202	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129	2.7 47 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76 109	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134	82 78.3 10.8 -1.9 61.0 5.0 6.4 62 100 345 202 39.1 77 124	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129 0.65	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76 109 0.69	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134 0.61	61.0 5.0 6.4 62 100 345 202 39.1 77 124 0.62	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125 0.60	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129	2.7 47 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76 109	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134	82 78.3 10.8 -1.9 61.0 5.0 6.4 62 100 345 202 39.1 77 124	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129 0.65	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76 109 0.69	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134 0.61	61.0 5.0 6.4 62 100 345 202 39.1 77 124 0.62	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125 0.60	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129 0.65	2.7 47 60.0 3.5 6.5 46 88 350 175 34.6 76 109 0.69	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134 0.61	10.8 -1.9 61.0 5.0 6.4 62 100 345 202 39.1 77 124 0.62	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125 0.60 2.8	
Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.8	78.0 11.4 -1.4 62.8 5.0 6.5 59 99 335 204 45.6 85 129 0.65	2.7 47 (8 83 77.8 9.8 -1.8 60.0 3.5 6.5 46 88 350 175 34.6 76 109 0.69	3.0 52		1.7	2.7 49 B1 77.3 11.9 -1.8 62.9 4.9 5.7 61 103 330 218 44.6 81 134 0.61	61.0 5.0 6.4 62 100 345 202 39.1 77 124 0.62	2.3	3.0 51		0.2 1.6 COW 76.8 10.7 -1.5 60.5 4.3 7.0 48 88 335 185 38.2 75 125 0.60	

MAINLY IRRIGATION North-West Province

PRODUCTION REGION

(20) North-West Eastern Region

Intake silos

Battery Boons Brits Derby Koster Rustenburg Swartruggens Syferbult

SUMMER RAINFALL WHEAT (AND IRRIGATION)

Free State Province (Central)
(21)
Free State

North-Western Region (Viljoenskroon)

Groenebloem Heuningspruit Koppies Rooiwal Vierfontein Viljoenskroon Vredefort Weiveld

SST Kar SST	N 826 806 iega 876 835 1 min 2.3 45	2° 1° 1°	5.4 1.4 3.2 1.2	stdev 0.7 27.2 1.9 2.5 0.6 1.4 stdev 0.3 3.3	ave 12.0 354 36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN	min 3.2	max 13.0 462 38.3 80.0 4.6 1.2 8 35 19 17 14 5.	5.6 9.9 7.9 4.6 4	stdev 0.7 67.4 1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	9.8 310 37.6 69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	12.6 400 45.1 79.1 2.6 5.2 3 29 21 11 9 13	5.4 1.4 3.2 1.2	0.7 27.2 1.9 2.5 0.6 1.4 stdev 0.3 3.3	12.0 354 36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	11.2 278 33.0 74.8 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 1.3 0.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	13.0 462 38.3 80.0 4.6 1.2 8 35 19 17 14 5.	5.6 0.9 7.9 1.6 4.4	0.7 67.4 1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	9.8 310 37.6 69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	12.6 400 45.1 79.1 2.6 5.2 3 29 21 11 9 13	5.4 1.4 3.2 1.2	0.7 27.2 1.9 2.5 0.6 1.4 stdev 0.3 3.3	12.0 354 36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	11.2 278 33.0 74.8 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 1.3 0.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	13.0 462 38.3 80.0 4.6 1.2 8 35 19 17 14 5.	5.6 0.9 7.9 1.6 4.4	0.7 67.4 1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	9.8 310 37.6 69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	12.6 400 45.1 79.1 2.6 5.2 3 29 21 11 9 13	5.4 1.4 3.2 1.2	0.7 27.2 1.9 2.5 0.6 1.4 stdev 0.3 3.3	12.0 354 36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	11.2 278 33.0 74.8 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 1.3 0.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	13.0 462 38.3 80.0 4.6 1.2 8 35 19 17 14 5.	5.6 0.9 7.9 1.6 4.4	0.7 67.4 1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	9.8 310 37.6 69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	12.6 400 45.1 79.1 2.6 5.2 3 29 21 11 9 13	5.4 1.4 3.2 1.2	0.7 27.2 1.9 2.5 0.6 1.4 stdev 0.3 3.3	12.0 354 36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	11.2 278 33.0 74.8 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 1.3 0.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	13.0 462 38.3 80.0 4.6 1.2 8 35 19 17 14 5.	5.6 0.9 7.9 1.6 4.4	0.7 67.4 1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	37.6 69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	45.1 79.1 2.6 5.2 3 2 2 11 11 9 3 3.3 55	5.4 1.4 3.2 1.2	1.9 2.5 0.6 1.4 stdev 0.3 3.3	36.9 78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	33.0 74.8 1.3 0.5 0.5 8826 806 3118 a-DN min 3.2 51	38.3 80.0 4.6 1.2 8 35 19 17 14 5. 8	5.6 9.9 7.9 1.6 4	1.8 1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	69.9 0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	79.1 2.6 5.2 3 2 2 1: 11 9 3 3.3 55	5.4 1.4 3.2 1.2 .9	2.5 0.6 1.4 stdev 0.3 3.3	78.4 2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	74.8 1.3 0.5 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	80.0 4.6 1.2 8 35 19 17 14 5. 8	5.6 9.9 9.6 4.4	1.9 1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	0.1 0.5 1 826 806 iega 876 835 1 min 2.3 45 1	2.6 5.2 3 24 2 13 14 19 9 3 3 3 3 5 5 5 13	5.4 1.4 3.2 1.2 .9	0.6 1.4 stdev 0.3 3.3	2.3 1.0 ave 3.6 55	Ela CRN SST PAN Betta	1.3 0.5 0.5 N 826 F 806 3118 a-DN min 3.2 51	4.6 1.2 8 35 19 17 144 5. 8 max 4.4 60 8	5.6 0.9 7.9 1.6 4	1.1 0.2 stdev 0.5 2.8
CRN SST Kar SST SST	0.5 1 826 806 iega 876 835 1 min 2.3 45 1 B3	5.2 3 2 2 13 11 9 3 3 3.3 55	5.4 1.4 3.2 1.2 .9	stdev 0.3 3.3	ave 3.6 55	CRN SST PAN Betta	0.5 ands N 826 806 3118 a-DN min 3.2 51	1.2 8 35 19 17 14 5. 8 max 4.4 60 8	9.9 7.9 4.6 4	0.2 stdev 0.5 2.8
CRN SST Kar SST SST	1 N 826 806 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 22 13 11 11 9 3 3 3.3 55	5.4 1.4 3.2 1.2 .9	stdev 0.3 3.3	ave 3.6 55	CRN SST PAN Betta	min 3.2	35 19 17 14 5. 8 max 4.4 60	9.9 7.9 4.6 4	stdev 0.5 2.8
SST Kar SST SST	N 826 806 iega 876 835 1 min 2.3 45	25 2 13 11 9 3 3 3 55	1.4 3.2 1.2 .9	0.3 3.3	3.6 55 B1	CRN SST PAN Betta	min 3.2	35 19 17 14 5. 8 max 4.4 60	9.9 7.9 4.6 4	0.5 2.8
SST Kar SST SST	806 iega 876 835 1 min 2.3 45	22 13 17 9 18 18 18 18 18 18 18 18 18 18 18 18 18	1.4 3.2 1.2 .9	0.3 3.3	3.6 55 B1	CRN SST PAN Betta	N 826 F 806 3118 a-DN min 3.2 51	19 17 14 5. 8 max 4.4 60	9.9 7.9 4.6 4	0.5 2.8
SST Kar SST SST	806 iega 876 835 1 min 2.3 45	22 13 17 9 18 18 18 18 18 18 18 18 18 18 18 18 18	1.4 3.2 1.2 .9	0.3 3.3	3.6 55 B1	CRN SST PAN Betta	N 826 F 806 3118 a-DN min 3.2 51	19 17 14 5. 8 max 4.4 60	9.9 7.9 4.6 4	0.5 2.8
Kar SST SST	min 2.3 45 1	13 11 9 3 3 3.3 55	3.2	0.3 3.3	3.6 55 B1	SST PAN Betta	min 3.2 51	17 14 5. 8 max 4.4 60	7.9	0.5 2.8
SST SST	876 835 1 min 2.3 45 1	11' 9 3 3 3 3 3 5 5 3	1.2	0.3 3.3	3.6 55 B1	PAN Betta	3118 a-DN min 3.2 51	14 5. 8 max 4.4 60	4.6	0.5 2.8
SST	835 1 min 2.3 45 1	9 3 max 3.3 55	.9	0.3 3.3	3.6 55 B1	Betta	min 3.2 51	5. max 4.4 60	4	0.5 2.8
B2	min 2.3 45 1	3 max 3.3 55	C	0.3 3.3	3.6 55 B1	B2	min 3.2 51	max 4.4 60		0.5 2.8
B2	2.3 45 1	3.3 55		0.3 3.3	3.6 55 B1		51	4.4 60 8		0.5 2.8
B2	2.3 45 1	3.3 55		0.3 3.3	3.6 55 B1		51	4.4 60 8		0.5 2.8
B2	2.3 45 1	3.3 55		0.3 3.3	3.6 55 B1		51	4.4 60 8		0.5 2.8
B2	45 1 B3	55 3		3.3 COW	55 B1		51	60 8	UT	2.8
	1 B3	3	UT	cow	B1			8	UT	
		B4	UT				B3	B4	UT	cow
		B4	UT				B3	B4	UT	cow
77.8	76.9			77.7	75.4	76.1	1			
										-
11.1	10.5			10.3	12.6	11.1				
-1.4	-1.3			-1.7	-1.0	-1.6				
62.0	59.8			58.9	60.8	58.8				
2.5	3.2			3.8	5.9	2.0				
6.2	7.7			6.1	12.7	10.8				
41	36			55	25	10				_
90	108			95	138	139				
300	375			335	485	535				
210	199			197	194	186				
20.1	41.0			20.7	56.3	40 E				
				_						+
0.04	0.00			0.72	0.00	0.01				
2.6	2.9			2.5	3.7	3.7				-
				830	000	865				
900	870									4
	300 210 39.1 78 121 0.64	300 375 210 199 39.1 41.9 78 79 121 122 0.64 0.65	300 375 210 199 39.1 41.9 78 79 121 122 0.64 0.65 2.6 2.9	300 375 210 199 39.1 41.9 78 79 121 122 0.64 0.65	300 375 335 210 199 197 39.1 41.9 32.7 78 79 59 121 122 140 0.64 0.65 0.42 2.6 2.9 2.5	300 375 335 485 210 199 197 194 39.1 41.9 32.7 56.3 78 79 59 99 121 122 140 110 0.64 0.65 0.42 0.90 2.6 2.9 2.5 3.7	300 375 335 485 535 210 199 197 194 186 39.1 41.9 32.7 56.3 49.5 78 79 59 99 91 121 122 140 110 112 0.64 0.65 0.42 0.90 0.81 2.6 2.9 2.5 3.7 3.7	300 375 335 485 535 210 199 197 194 186 39.1 41.9 32.7 56.3 49.5 78 79 59 99 91 121 122 140 110 112 0.64 0.65 0.42 0.90 0.81	300 375 335 485 535 210 199 197 194 186 39.1 41.9 32.7 56.3 49.5 78 79 59 99 91 121 122 140 110 112 0.64 0.65 0.42 0.90 0.81 2.6 2.9 2.5 3.7 3.7	300 375 335 485 535 210 199 197 194 186 39.1 41.9 32.7 56.3 49.5 78 79 59 99 91 121 122 140 110 112 0.64 0.65 0.42 0.90 0.81 2.6 2.9 2.5 3.7 3.7

FARINOGRAM 20 21

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (Central)

PRODUCTION REGION	(26) Free St South-l		Region (Senekal)		(27) Free State Northern Region							
Intake silos	Arlingto Kaallaa Libertas Marqua Meets Monte \ Seneka Steynsr	gte s rd /ideo I				Gottenb Heilbror Hoogte Mooigel Petrus \$ Wolweh	n leë Steyn							
WHEAT	ave		min	max	(stdev	ave	,	min	max		stdev		
Protein (12% mb), %	11.1		9.4	13.1		1.0	11.1		9.2	13.7		1.2		
Falling number, sec	312		227	392		34.2	298		209	378		59.8		
1000 Kernel mass (13% mb), g	38.4		34.2	42.1		2.4	39.8		36.6	42.1		1.6		
Hectolitre mass (dirty), kg/hl	79.2		75.9	81.3		1.4	80.2		78.0	82.2		1.4		
Screenings (<1.8mm), %	1.5		0.6	3.2		0.7	0.7		0.2	1.1		0.3		
Total damaged kernels, %	0.4		0.0	1.0		0.3	0.7		0.1	3.0		8.0		
Number of samples			2	26					1	10				
CULTIVARS		Ela	nds	32	2.1			Ela	nds	47	7.8			
cultivars		Ga	riep	31	1.0			PAN	3377	12	0			
with highest %			3377	10.8					826	10.2				
occurrence			3118		.3			SST 806 6.7						
		Betta	a-DN		.0		SST 356 5.4							
Number of samples				26					1	0				
MIXOGRAM (Quadromat)	ave		min	max	c	stdev	ave		min	max		stdev		
Peak time, min	3.6		2.8	5.0		0.5	3.2		2.4	3.8		0.5		
Tail height (6min), mm	54		46	62		4.2	53		47	65		5.0		
Number of samples			2	26					1	10				
	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	cow		
BÜHLER EXTRACTION, %	75.0	75.0	75.4	75.0	74.7	JOW		74.9	74.5	74.1	- 01	COW		
FLOUR	40.0	44.5	40.4	0.4	0.4			40.0		0.0				
Protein (12% mb), % Colour, KJ	12.8	11.5 1.8	10.1 -0.3	9.1	9.1			10.8 -0.7	9.9	8.9 -2.0				
Coloul, KJ	-1.0	1.0	-0.3	-1.9	-1.0			-0.7	-1.0	-2.0		 		
FARINOGRAM Water absorption (14% mb), %	62.4	61.5	61.1	62.1	58.9			62.9	62.9	62.2				
Development time, min	3.8	3.5	2.2	1.8	1.4			4.5	2.3	1.9				
Stability, min	13.1	8.9	6.1	3.4	3.0			7.5	6.2	3.7				
Mixing tolerance index, BU	18	26	46	71	66	_		44	43	66		<u> </u>		
EXTENSOGRAM (45 min pull) Area, cm2	142	124	95	85	96			94	82	85				
Maximum height, BU	520	475	455	405	395			390	365	405				
Extensibility, mm	191	187	150	146	151			166	156	145				
ALVEOGRAM Strength (S), cm2	57.3	52.1	43.6	36.5	34.6			48.2	43.0	37.6				
Stability (P), mm	114	108	118	129	97			109	113	119				
Distensibility (L), mm	92	94	65	46	66			93	73	56				
Configuration ratio (P/L)	1.23	1.15	1.82	2.78	1.46			1.17	1.53	2.13				
MIXOGRAM										0.0				
Peak time, min	3.5	2.8	3.3	2.9	2.7			2.5	3.2	2.3		+		
Peak time, min 100g BAKING TEST Loaf volume, cm3	3.5	2.8 825	785	550	725			800	715	645				

MIXOGRAM 26 27

FARINOGRAM 26 27

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (North-Western)

Intake silos Allanridge Bothaville Mirage Odendaalsrus Schoonspruit Schuttesdraai Bultfontein Losdoorns Protespan Tierfontein Wesselsbron Willemsrust								
	Losdoorns Protespan Tierfontein Wesselsbron							
WHEAT								
ave min max stdev ave min	max		stdev					
Protein (12% mb), % 12.1 11.0 12.6 0.7 11.5 9.0 Falling number, sec 383 294 431 64.2 367 151	13.9		65.3					
Falling number, sec 383 294 431 64.2 367 151 1000 Kernel mass (13% mb), g 36.6 33.3 38.8 1.8 35.7 22.0	39.4		3.6					
Hectolitre mass (dirty), kg/hl 77.8 76.0 79.6 1.3 77.7 66.9	81.6		3.0					
Screenings (<1.8mm), % 1.6 0.6 2.3 0.6 2.1 0.9	8.3		1.4					
Total damaged kernels, % 1.7 0.5 4.3 1.4 0.5 0.1	2.4		0.5					
Number of samples 6 25	5							
CULTIVARS								
CRN 826 33.0 CRN 826		0.3						
Cultivars PAN 3377 14.8 PAN 3118		6.9						
with highest % SST 806 12.3 PAN 3120	PAN 3120 7.4 SST 334 3.7							
SST 835 7.5 SST 806 Number of samples 6 25		3.5						
Number of Samples 0								
MIXOGRAM (Quadromat)								
ave min max stdev ave min	max	K	stdev					
Peak time, min 2.7 2.2 3.5 0.6 3.0 2.3	3.8		0.5					
Tail height (6min), mm 54 48 59 4.6 53 46	68		5.2					
Number of samples 6 25	25							
B1 B2 B3 B4 UT COW B1 B2 B3	B4	UT	cow					
BÜHLER EXTRACTION, % 75.9 75.5 75.3 75.6 76.3	73.0	74.7	71.5					
FLOUR								
Protein (12% mb), % 12.2 11.2 11.9 11.2 10.6	8.8	10.9	12.6					
Colour, KJ -1.7 -1.7 -1.9 -1.9 -2.3	-2.4	-2.2	0.0					
FARINOGRAM								
Water absorption (14% mb), % 61.6 60.9 63.0 61.1 59.1	62.4	60.7	62.0					
Development time, min 5.5 4.7 6.0 4.8 4.0	1.7	3.0	5.2					
Stability, min 9.0 7.2 9.4 8.7 6.9	3.5	7.8	9.2					
Mixing tolerance index, BU 40 43 37 37 42	62	33	42					
EXTENDOODAM (45 min mult)								
EXTENSOGRAM (45 min pull) Area, cm2	69	92	132					
Area, cm2 119 110 95 98 93 Maximum height, BU 400 375 365 410 355	355	390	445					
Extensibility, mm 204 200 187 167 179	132	165	204					
207 200 107 107 179	102	100	204					
ALVEOGRAM								
Strength (S), cm2 54.1 44.6 56.6 48.6 39.1	34.6	45.1	58.7					
Stability (P), mm 90 87 104 91 73	135	96	100					
Distensibility (L), mm 134 117 114 115 134	41	99	118					
Configuration ratio (P/L) 0.67 0.74 0.91 0.79 0.54	3.26	0.98	0.85					
MIXOCDAM								
MIXOGRAM 2.8 2.5 2.8 2.5 2.5	4.0	2.8	3.3					
2.0 2.5 2.5 2.5	4.0	2.0	3.3					
100g BAKING TEST								
IVVI DAMINO ILOI	660	765	835					
Loaf volume, cm3 950 880 950 910 850		3	4					

FARINOGRAM 22 23

SOUTH AFRICAN

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (Eastern)

PRODUCTION REGION	(25) Free St						(28) Free St					
Intake silos	South-l Bethleh	Eastern l	Region (Bethlehe	em)		Easterr Afrikask	Region	1			
	Clocola	n					Ascent	·				
	De Wet Ficksbu						Cornelia					
	Fouries	-					Eeram	ius				
	Marseill						Frankfo					
	Modder Slabber						Harrism Jim Fou					
	Tweesp						Kransfo					
	Westmi						Memel					
	Zastron						Reitz Tweelin	a				
							Villiers	3				
							Vrede Warden					
							Windfie					
WHEAT												
	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	10.6		8.8 228	13.3		1.0 38.9	10.8		9.2	12.4 446		<u>0.8</u> 40.7
Falling number, sec 1000 Kernel mass (13% mb), g	39.8		34.7	45.3		2.7	40.9		36.5	44.8		2.0
Hectolitre mass (dirty), kg/hl	78.1		64.4	81.3		3.5	80.5		76.7	82.7		1.3
Screenings (<1.8mm), %	1.8		0.5	4.2		1.1	0.8		0.1	4.8		0.9
Total damaged kernels, %	0.4		0.1	1.3		0.2	0.4		0.0	1.1		0.3
Number of samples	+ +		3	32					-	32		
CULTIVARS												
. 10			nds	40					nds		1.5	
cultivars with highest %			riep abas		.6 .7				835 a-DN		.4 .6	
occurrence			a-DN		.0				3377		.4	
		SST	399		.3			CRN	826	4	.9	
Number of samples			3	2					3	32		
MIXOGRAM (Quadromat)												
Peak time min	ave		min 1 7	max 4.8		on 6	ave		min 23	max 5.0		o 5
Peak time, min Tail height (6min), mm	3.5 52		1.7 45	4.8 60		0.6 3.7	3.3 54		min 2.3 46	5.0 63		0.5 3.9
	3.5		1.7 45	4.8		0.6	3.3		2.3 46	5.0		0.5
Tail height (6min), mm	3.5		1.7 45	4.8 60		0.6 3.7	3.3		2.3	5.0 63 32		0.5
Tail height (6min), mm	3.5		1.7 45	4.8 60	UT 75.0	0.6	3.3	B2 76.0	2.3 46	5.0 63	UT	0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	3.5 52 B1	B2	1.7 45 3	4.8 60 22	UT	0.6 3.7	3.3 54 B1	B2	2.3 46 3	5.0 63 32		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	3.5 52 B1 75.6	B2 75.0	1.7 45 3 B3 75.0	4.8 60 82 B4 74.7	UT 75.0	0.6 3.7 COW 75.2	3.3 54 B1 75.5	B2 76.0	2.3 46 3 B3 75.0	5.0 63 32 B4 74.5		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	3.5 52 B1	B2	1.7 45 3	4.8 60 22	UT	0.6 3.7	3.3 54 B1	B2	2.3 46 3	5.0 63 32		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	3.5 52 B1 75.6	B2 75.0	1.7 45 3 B3 75.0	4.8 60 22 B4 74.7	UT 75.0	0.6 3.7 COW 75.2	3.3 54 B1 75.5	B2 76.0	2.3 46 3 B3 75.0	5.0 63 32 B4 74.5		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	3.5 52 B1 75.6 12.6 -2.1	B2 75.0 11.3 -1.7	1.7 45 3 75.0 10.4 -1.8	4.8 60 22 84 74.7 9.2 -2.1	9.7 -0.7	0.6 3.7 COW 75.2 12.1 -0.3	3.3 54 B1 75.5 12.1 -1.4	B2 76.0 11.1 -1.5	2.3 46 3 75.0 10.1 -1.6	5.0 63 32 84 74.5 9.0 -2.0		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	3.5 52 B1 75.6	B2 75.0	1.7 45 3 B3 75.0	4.8 60 22 B4 74.7	UT 75.0	0.6 3.7 COW 75.2	3.3 54 B1 75.5	B2 76.0	2.3 46 3 B3 75.0	5.0 63 32 B4 74.5		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1	11.3 -1.7 63.2 2.7 8.8	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2	9.7 -0.7 62.2 2.3 6.2	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3	11.1 -1.5 63.4 2.0 9.9	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5	11.3 -1.7 63.2 2.7	1.7 45 3 75.0 10.4 -1.8 62.7 2.2	4.8 60 82 B4 74.7 9.2 -2.1 62.6 2.0	9.7 -0.7 62.2 2.3	0.6 3.7 75.2 12.1 -0.3 61.6 4.7	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7	11.1 -1.5 63.4 2.0	2.3 46 3 75.0 10.1 -1.6 61.7 1.4	5.0 63 32 B4 74.5 9.0 -2.0		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1	11.3 -1.7 63.2 2.7 8.8	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2	9.7 -0.7 62.2 2.3 6.2	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3	11.1 -1.5 63.4 2.0 9.9	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41	11.3 -1.7 63.2 2.7 8.8	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2	9.7 -0.7 62.2 2.3 6.2 42	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3	11.1 -1.5 63.4 2.0 9.9 13	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300	11.3 -1.7 63.2 2.7 8.8 38	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59	9.7 -0.7 62.2 2.3 6.2 42 88 385	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390	63.4 2.0 9.9 13	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41	11.3 -1.7 63.2 2.7 8.8 38	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59	9.7 -0.7 62.2 2.3 6.2 42	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30	11.1 -1.5 63.4 2.0 9.9 13	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300	11.3 -1.7 63.2 2.7 8.8 38	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59	9.7 -0.7 62.2 2.3 6.2 42 88 385	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390	63.4 2.0 9.9 13	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5	63.2 2.7 8.8 38 114 465 173	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154	9.7 -0.7 62.2 2.3 6.2 42 88 385 157	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2	82 76.0 11.1 -1.5 63.4 2.0 9.9 13 100 415 169	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106	82 75.0 11.3 -1.7 63.2 2.7 8.8 38 114 465 173	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133	4.8 60 12 84 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132	82 76.0 11.1 -1.5 63.4 2.0 9.9 13 100 415 169	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117	5.0 63 32 84 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106 85	82 75.0 11.3 -1.7 63.2 2.7 8.8 38 114 465 173 53.7 120 87	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133 70	4.8 60 12 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154 41.7 140 50	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183 53.2 101 106	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132 98	82 76.0 11.1 -1.5 63.4 2.0 9.9 13 100 415 169 57.2 120 94	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117 66	5.0 63 32 84 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106	82 75.0 11.3 -1.7 63.2 2.7 8.8 38 114 465 173	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133	4.8 60 12 84 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132	82 76.0 11.1 -1.5 63.4 2.0 9.9 13 100 415 169	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117	5.0 63 32 84 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106 85 1.25	63.2 2.7 8.8 38 114 465 173 53.7 120 87	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133 70 1.91	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154 41.7 140 50 2.80	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183 53.2 101 106 0.96	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132 98 1.34	11.1 -1.5 63.4 2.0 9.9 13 100 415 169 57.2 120 94 1.27	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117 66 1.78	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137 36.5 125 48 2.59		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106 85	82 75.0 11.3 -1.7 63.2 2.7 8.8 38 114 465 173 53.7 120 87	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133 70	4.8 60 12 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154 41.7 140 50	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183 53.2 101 106	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132 98	82 76.0 11.1 -1.5 63.4 2.0 9.9 13 100 415 169 57.2 120 94	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117 66	5.0 63 32 84 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106 85 1.25	82 75.0 11.3 -1.7 63.2 2.7 8.8 38 114 465 173 53.7 120 87 1.37	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133 70 1.91	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154 41.7 140 50 2.80	9.7 -0.7 62.2 2.3 6.2 42 88 385 157 40.7 114 70 1.64	0.6 3.7 COW 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183 53.2 101 106 0.96	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132 98 1.34	11.1 -1.5 63.4 2.0 9.9 13 100 415 169 57.2 120 94 1.27	2.3 46 83 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117 66 1.78	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137 36.5 125 48 2.59		0.5
Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	3.5 52 B1 75.6 12.6 -2.1 65.7 4.5 7.1 41 74 300 175 44.5 106 85 1.25	63.2 2.7 8.8 38 114 465 173 53.7 120 87	1.7 45 3 75.0 10.4 -1.8 62.7 2.2 7.7 35 116 470 173 51.7 133 70 1.91	4.8 60 22 B4 74.7 9.2 -2.1 62.6 2.0 4.2 59 100 450 154 41.7 140 50 2.80	9.7 -0.7 -0.7 -62.2 2.3 6.2 42 	0.6 3.7 75.2 12.1 -0.3 61.6 4.7 9.3 35 113 430 183 53.2 101 106 0.96	3.3 54 B1 75.5 12.1 -1.4 66.2 4.7 9.3 30 109 390 195 64.2 132 98 1.34	11.1 -1.5 63.4 2.0 9.9 13 100 415 169 57.2 120 94 1.27	2.3 46 3 75.0 10.1 -1.6 61.7 1.4 6.1 44 90 410 152 42.8 117 66 1.78	5.0 63 32 B4 74.5 9.0 -2.0 61.4 1.8 3.0 70 81 405 137 36.5 125 48 2.59		0.5

FARINOGRAM 25 28

SOUTH AFRICAN

SUMMER RAINFALL WHEAT (AND IRRIGATION) Free State Province (South-Western)

PRODUCTION REGION

(24) Free State Central Region

Intake silos

Bloemfontein Brandfort De Brug Geneva Hennenman Koffiefontein Kroonstad Petrusburg Theunissen Van Tonder Welgeleë Winburg

OTHER SUMMER RAINFALL WHEAT AND IRRIGATION

Mpumalanga

(29)

Mpumalanga Southern Region

Balfour Greylingstad Grootvlei Harvard Holmdene Leeuspruit Platrand Standerton Val

WHEAT								'				
Dratain (420/ mb) 0/	ave		min	max		stdev	ave		min	max		stdev
Protein (12% mb), %	11.6		9.4	12.6		0.6	12.6		12.5	12.8		0.2
Falling number, sec	344		247	459 39.5		54.8 1.8	388 38.0		349 37.1	412		34.1
1000 Kernel mass (13% mb), g	36.3		33.1							38.6		0.8
Hectolitre mass (dirty), kg/hl	77.7		74.0	81.4 5.7		2.0	78.1 0.7		77.8	78.7 0.8		0.5
Screenings (<1.8mm), %												
Total damaged kernels, %	2.6		0.2	8.8		3.0	0.6		0.5	0.7 3		0.1
Number of samples				В						3		
CULTIVARS												
		CRN	826 25.2					SST	806	47	.7	
cultivars		PAN	3118	18	.0			CRN	N 826	40	.7	
with highest %		Ga	riep	14	.6			SST	876	9	.7	
occurrence		PAN	3377	9.	4			Olif	ants	2	.0	
		Ela	nds	7.	5							
Number of samples			2	6						3		
MIXOGRAM (Quadramet)												
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.9		2.3	3.7		0.4	2.3		2.2	2.5		0.2
Tail height (6min), mm	53		41	63		4.8	50		48	51		1.5
Number of samples				6						3		
	B1	B2	B3	B4	UT	cow	B1	B2	B3	B4	UT	cow
BÜHLER EXTRACTION, %	74.9	75.7	74.2		75.3	75.4	76.6					
FLOUR												
FLOUR	11.9	11.3	10.4		11.5	11.7	12.6					
Protein (12% mb), % Colour, KJ	-1.6	-1.9	-1.9		-1.8	-1.5	-2.0					
Coloul, KJ	-1.0	-1.9	-1.9		-1.0	-1.5	-2.0					
FARINOGRAM												
Water absorption (14% mb), %	61.6	61.7	60.4		61.3	60.9	61.7					
Development time, min	5.5	4.2	2.2		5.0	4.7	5.2					
Stability, min	11.2	7.9	6.0		9.7	7.7	6.1					
Mixing tolerance index, BU	28	45	47		33	41	56					
EXTENSOGRAM (45 min pull)												
Area, cm2	134	106	97		113	103	90					
Maximum height, BU	480	390	440		430	370	305					
Extensibility, mm	194	191	159		179	194	202					
ALVEGGRAM												
ALVEOGRAM Strength (S), cm2	56.4	47.2	45.9		52.8	45.4	38.2					
	97	94	103		98	81	69					
Stability (P), mm Distensibility (L), mm	119	107	83		113	127	149					
Configuration ratio (P/L)	0.82	0.88	1.25		0.87	0.64	0.47					
Comiguration ratio (F/L)	0.02	0.00	1.20		0.07	0.04	0.47					
MIXOGRAM												
Peak time, min	2.8	2.8	3.3		2.8	2.3	2.3					
100g BAKING TEST												
Loaf volume, cm3	855	850	740		825	900	965					
Evaluation	2	1	3		2	0	0					

FARINOGRAM 24 29

SOUTH AFRICAN

OTHER SUMMER RAINFALL WHEAT AND IRRIGATION Mpumalanga

PRODUCTION REGION	(30) Mpuma Eastern	langa Region					(32) Mpuma Westerr	-	n			
Intake silos	Amersfor Badplaa Carolina Davel Ermelo Estancia Lothair Maizefia Mkondo Morgen. Overvaa Panbult	as a eld zon					Argent Dryden Endicott Elof Hawerkl Kendal Ogies					
WHEAT						-1.1.						-1.1
Protein (12% mb), %	11.3		min 11.1	max 11.4		stdev 0.1	12.3		min 11.7	max 12.6		stdev 0.5
Falling number, sec	428		372	473		37.1	344		333	352		9.7
1000 Kernel mass (13% mb), g	41.9		41.2	43.0		0.8	38.1		35.2	39.9		2.5
Hectolitre mass (dirty), kg/hl	78.2		77.4	79.0		8.0	77.8		75.6	79.1		1.9
Screenings (<1.8mm), %	2.7		1.5	5.5		1.6	1.2		0.7	2.1		0.8
Total damaged kernels, %	0.4		0.1	1.0		0.4	0.4		0.2	0.7		0.2
Number of samples	_			5			ļ			3		
CULTIVARS		Kar	iega	22	2.8			SST	806	46	8.0	
cultivars			1 826	21	.2			CRN	N 826	36	3.0	
with highest %		SST	806	20).6			SST	876	14	1.3	
occurrence		SST	876	16	6.6			SST	835	3	.7	
		Di	uzi		.4		ļ					
Number of samples				5				-		3		
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max		stdev
Peak time, min	2.3		2.3	2.4		0.0	2.8		2.7	3.0		0.2
Tail height (6min), mm	48		47	50		1.3	51		50	53		1.5
Number of samples	+			5			ļ			3		
BÜHLER EXTRACTION, %	B1	B2 78.0	В3	B4	UT	COW	B1 77.8	B2	B3 76.4	B4	UT	COW
FLOUR												
Protein (12% mb), %		11.0					400					
Colour, KJ							1 1/9 1		1111			
FARINOGRAM		-2.3					12.9 -0.8		11.1 -2.1			
Water absorption (14% mb), %							-0.8		-2.1			
Development time, min		61.9			1		-0.8 63.3		-2.1 60.8			
		61.9 3.4			/		-0.8 63.3 5.9		-2.1 60.8 4.0			
Stability, min		61.9 3.4 5.8					-0.8 63.3 5.9 8.2		-2.1 60.8 4.0 8.2			
		61.9 3.4			//		-0.8 63.3 5.9		-2.1 60.8 4.0			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)		61.9 3.4 5.8 51			//		-0.8 63.3 5.9 8.2 43		-2.1 60.8 4.0 8.2			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2		61.9 3.4 5.8 51					-0.8 63.3 5.9 8.2 43		-2.1 60.8 4.0 8.2 38			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU		61.9 3.4 5.8 51 75 285					-0.8 63.3 5.9 8.2 43		-2.1 60.8 4.0 8.2 38 117 390			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2		61.9 3.4 5.8 51				/	-0.8 63.3 5.9 8.2 43		-2.1 60.8 4.0 8.2 38			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM		61.9 3.4 5.8 51 75 285					-0.8 63.3 5.9 8.2 43		-2.1 60.8 4.0 8.2 38 117 390			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm		61.9 3.4 5.8 51 75 285 184					63.3 5.9 8.2 43 122 355 240		60.8 4.0 8.2 38 117 390 210			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm		61.9 3.4 5.8 51 75 285 184					63.3 5.9 8.2 43 122 355 240		60.8 4.0 8.2 38 117 390 210			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm		61.9 3.4 5.8 51 75 285 184 37.5					63.3 5.9 8.2 43 122 355 240 48.6 80		60.8 4.0 8.2 38 117 390 210 43.4 82			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)		61.9 3.4 5.8 51 75 285 184 37.5 76 123					63.3 5.9 8.2 43 122 355 240 48.6 80		-2.1 60.8 4.0 8.2 38 117 390 210 43.4 82 126			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)		61.9 3.4 5.8 51 75 285 184 37.5 76 123 0.62					-0.8 63.3 5.9 8.2 43 122 355 240 48.6 80 148 0.54		60.8 4.0 8.2 38 117 390 210 43.4 82 126 0.65			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min		61.9 3.4 5.8 51 75 285 184 37.5 76 123					63.3 5.9 8.2 43 122 355 240 48.6 80		-2.1 60.8 4.0 8.2 38 117 390 210 43.4 82 126			
Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)		61.9 3.4 5.8 51 75 285 184 37.5 76 123 0.62					-0.8 63.3 5.9 8.2 43 122 355 240 48.6 80 148 0.54		60.8 4.0 8.2 38 117 390 210 43.4 82 126 0.65			

MIXOGRAM 30 32

FARINOGRAM 30 32

SOUTH AFRICAN

OTHER SUMMER RAINFALL WHEAT AND IRRIGATION Gauteng and Limpopo Provinces

PRODUCTION REGION	(34) Gauten	g					(35) Limpop	00				
Intake silos	Bloekor Bronkhi Glenroy Goeie H Kaalfon Middelv Nigel Oberho Raathsv	orstspruit Hoek tein Ilei					Alma Crecy Immerp Lehau Naboon Northan Nutfield Nylstroc Pienaar Pieterst Potgiete Roedtar Settlers Tzaneer Vaalwat Warmba	nspruit n om srivier ourg ersrus n				
WHEAT	21/6		min	may		otdov	21/0		min	may		otdov
Protein (12% mb), %	11.5		min 9.8	max 13.4		stdev 1.1	11.4		min 9.3	max 13.0		stdev 1.2
Falling number, sec	378		323	411		28.4	402		339	479		40.3
1000 Kernel mass (13% mb), g	39.3		34.4	49.4		4.2	37.6	,	32.1	43.5		3.5
Hectolitre mass (dirty), kg/hl	78.0		76.7	79.1		0.8	77.4		73.4	79.4		2.0
Screenings (<1.8mm), %	1.6		0.5	3.0		0.8	1.9		0.5	4.5		1.2
Total damaged kernels, %	0.6		0.1	1.4		0.4	0.6		0.0	2.2		0.8
Number of samples			1	11					1	10		
CULTIVARS		CRN	l 826	36	6.4			CRN	I 826	32	2.3	
cultivars		SST	806	25	5.3			D	uzi	21	1.0	
with highest %			iega	11				SST	806	18	3.6	
occurrence		Di	uzi	10).5			SST	835	7	.4	
		SST	876	8	.0			SST	876	4	.9	
Number of samples			1	1						10		
MIXOGRAM (Quadromat)	ave		min	max		stdev	ave		min	max	ž.	stdev
Peak time, min	2.6		2.3	3.3		0.3	2.7		1.8	3.5		0.5
Tail height (6min), mm	47		43	59		4.6	47		43	51		2.6
Number of samples			1	1						10		
			B3	B4	UT	cow	B1	B2	В3		UT	cow
	R1	I R2			01	0011		02		I RA		
BÜHLER EXTRACTION, %	B1 76.0	B2 76.7	77.3	76.2			76.4	76.6		B4 77.7	76.4	
FLOUR	76.0	76.7	77.3	76.2						77.7	76.4	
FLOUR Protein (12% mb), %	76.0	76.7	77.3 9.8	76.2 8.6			12.3	11.1	50	9.1	76.4	
FLOUR Protein (12% mb), % Colour, KJ	76.0	76.7	77.3	76.2						77.7	76.4	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	76.0 12.4 -1.2	76.7 11.0 -2.0	9.8 -1.7	76.2 8.6 -1.7			12.3 -0.1	11.1 -1.5		9.1 -2.1	76.4 11.1 -1.6	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	76.0 12.4 -1.2 61.6	76.7 11.0 -2.0 60.4	9.8 -1.7 60.2	76.2 8.6 -1.7 57.0			12.3 -0.1 61.9	11.1 -1.5 61.7		9.1 -2.1 56.6	76.4 11.1 -1.6 60.6	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	76.0 12.4 -1.2 61.6 4.5	76.7 11.0 -2.0 60.4 4.0	9.8 -1.7 60.2 2.3	76.2 8.6 -1.7 57.0 2.2	//		12.3 -0.1 61.9 4.7	11.1 -1.5 61.7 4.3		77.7 9.1 -2.1 56.6 1.9	76.4 11.1 -1.6 60.6 3.4	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min	76.0 12.4 -1.2 61.6	76.7 11.0 -2.0 60.4	9.8 -1.7 60.2	76.2 8.6 -1.7 57.0	//		12.3 -0.1 61.9	11.1 -1.5 61.7		9.1 -2.1 56.6	76.4 11.1 -1.6 60.6	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	76.0 12.4 -1.2 61.6 4.5 6.7	76.7 11.0 -2.0 60.4 4.0 5.8	9.8 -1.7 60.2 2.3 6.0	76.2 8.6 -1.7 57.0 2.2 4.6			12.3 -0.1 61.9 4.7 6.7	11.1 -1.5 61.7 4.3 6.7		77.7 9.1 -2.1 56.6 1.9 6.4	76.4 11.1 -1.6 60.6 3.4 6.7	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	76.0 12.4 -1.2 61.6 4.5 6.7 52	76.7 11.0 -2.0 60.4 4.0 5.8 56	9.8 -1.7 60.2 2.3 6.0 46	76.2 8.6 -1.7 57.0 2.2 4.6 57			12.3 -0.1 61.9 4.7 6.7 46	11.1 -1.5 61.7 4.3 6.7 48		9.1 -2.1 56.6 1.9 6.4 41	76.4 11.1 -1.6 60.6 3.4 6.7 41	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	76.0 12.4 -1.2 61.6 4.5 6.7 52	76.7 11.0 -2.0 60.4 4.0 5.8 56	9.8 -1.7 60.2 2.3 6.0 46	76.2 8.6 -1.7 57.0 2.2 4.6 57	//	/	12.3 -0.1 61.9 4.7 6.7 46	11.1 -1.5 61.7 4.3 6.7 48		77.7 9.1 -2.1 56.6 1.9 6.4 41	76.4 11.1 -1.6 60.6 3.4 6.7 41	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295	9.8 -1.7 60.2 2.3 6.0 46	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310		/	12.3 -0.1 61.9 4.7 6.7 46	11.1 -1.5 61.7 4.3 6.7 48		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	76.0 12.4 -1.2 61.6 4.5 6.7 52	76.7 11.0 -2.0 60.4 4.0 5.8 56	9.8 -1.7 60.2 2.3 6.0 46	76.2 8.6 -1.7 57.0 2.2 4.6 57	//		12.3 -0.1 61.9 4.7 6.7 46	11.1 -1.5 61.7 4.3 6.7 48		77.7 9.1 -2.1 56.6 1.9 6.4 41	76.4 11.1 -1.6 60.6 3.4 6.7 41	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192	9.8 -1.7 	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146		/	12.3 -0.1 61.9 4.7 6.7 46 85 315 191	11.1 -1.5 61.7 4.3 6.7 48 84 330 180		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192	9.8 -1.7 60.2 2.3 6.0 46 79 330 170	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146			12.3 -0.1 61.9 4.7 6.7 46 85 315 191	11.1 -1.5 61.7 4.3 6.7 48 84 330 180		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72	9.8 -1.7 -60.2 2.3 6.0 46 -79 33.0 170	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80	11.1 -1.5 61.7 4.3 6.7 48 84 330 180		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74 142	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72 120	9.8 -1.7 -60.2 2.3 6.0 46 -79 33.0 170 -39.9 86 103	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64 87			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80 127	11.1 -1.5 61.7 4.3 6.7 48 84 330 180 37.0 78		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64 130	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74 117	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72	9.8 -1.7 -60.2 2.3 6.0 46 -79 33.0 170	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80	11.1 -1.5 61.7 4.3 6.7 48 84 330 180		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74 142	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72 120	9.8 -1.7 -60.2 2.3 6.0 46 -79 33.0 170 -39.9 86 103	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64 87			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80 127	11.1 -1.5 61.7 4.3 6.7 48 84 330 180 37.0 78		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64 130	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74 117	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74 142	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72 120	9.8 -1.7 -60.2 2.3 6.0 46 -79 33.0 170 -39.9 86 103	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64 87			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80 127	11.1 -1.5 61.7 4.3 6.7 48 84 330 180 37.0 78		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64 130	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74 117	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min 100g BAKING TEST	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74 142 0.52	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72 120 0.60 2.3	77.3 9.8 -1.7 60.2 2.3 6.0 46 79 330 170 39.9 86 103 0.84	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64 87 0.74			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80 127 0.63	11.1 -1.5 61.7 4.3 6.7 48 84 330 180 37.0 78 113 0.70		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64 130 0.49	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74 117 0.63	
FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	76.0 12.4 -1.2 61.6 4.5 6.7 52 96 345 195 41.4 74 142 0.52	76.7 11.0 -2.0 60.4 4.0 5.8 56 87 295 192 34.1 72 120 0.60	77.3 9.8 -1.7 60.2 2.3 6.0 46 79 330 170 39.9 86 103 0.84	76.2 8.6 -1.7 57.0 2.2 4.6 57 68 310 146 24.0 64 87 0.74			12.3 -0.1 61.9 4.7 6.7 46 85 315 191 42.2 80 127 0.63	11.1 -1.5 61.7 4.3 6.7 48 84 330 180 37.0 78 113 0.70		77.7 9.1 -2.1 56.6 1.9 6.4 41 79 355 153 34.1 64 130 0.49	76.4 11.1 -1.6 60.6 3.4 6.7 41 104 345 213 35.8 74 117 0.63	

FARINOGRAM 34 35

SOUTH AFRICAN

Evaluation

OTHER SUMMER RAINFALL WHEAT AND IRRIGATION KwaZulu-Natal Province

PRODUCTION REGION	(36) KwaZul	u-Natal				
Intake silos	Bergville Bloedriv Dannha Dundee Mizpah New Am Paulpiet Vryheid Winterto	rier user nalfi tersburg				
WHEAT		Н				
D. 11 (400) (400)	ave		min	max		stdev
Protein (12% mb), %	12.8		11.8	13.5		0.6
Falling number, sec	292		101	390		96.6
1000 Kernel mass (13% mb), g	38.9		36.1	41.9		1.5
Hectolitre mass (dirty), kg/hl	78.6		75.7	81.4		1.6
Screenings (<1.8mm), %	1.6		0.9	2.6		0.6
Total damaged kernels, %	2.4		0.4	11.1		2.7
Number of samples				15		
CULTIVARS		SST	806	42	2.9	
cultivars		CRN	826	28	3.1	
with highest %		SST	835	16	5.7	
occurrence		SST	825	3	.5	
		Kar	iega	3	.3	
Number of complete				15		
Number of samples				10		
MIXOGRAM (Quadromat)	ave					stdov
MIXOGRAM (Quadromat)	ave		min	max		stdev 0.5
MIXOGRAM (Quadromat) Peak time, min	ave 2.9				:	0.5 2.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm	2.9		min 2.5 48	max 3.8		0.5
MIXOGRAM (Quadromat) Peak time, min	2.9		min 2.5 48	max 3.8 55		0.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm	2.9	B2 76.9	min 2.5 48	max 3.8 55	UT 76.2	0.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	2.9 51 B1	B2	min 2.5 48	max 3.8 55	UT	0.5 2.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR	2.9 51 B1 77.5	B2 76.9	min 2.5 48	max 3.8 55	UT 76.2	0.5 2.5 COW 75.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, %	2.9 51 B1	B2	min 2.5 48	max 3.8 55	12.3	0.5 2.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	2.9 51 B1 77.5	B2 76.9	min 2.5 48	max 3.8 55	UT 76.2	0.5 2.5 COW 75.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), %	2.9 51 B1 77.5	B2 76.9	min 2.5 48	max 3.8 55	12.3	0.5 2.5 COW 75.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ	2.9 51 B1 77.5	B2 76.9	min 2.5 48	max 3.8 55	12.3	0.5 2.5 COW 75.5
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM	2.9 51 81 77.5 12.2 -1.1	B2 76.9 11.4 -1.7	min 2.5 48	max 3.8 55	12.3 -0.4	0.5 2.5 COW 75.5 12.8 0.3
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), %	2.9 51 B1 77.5 12.2 -1.1	B2 76.9 11.4 -1.7 61.7	min 2.5 48	max 3.8 55	12.3 -0.4	0.5 2.5 COW 75.5 12.8 0.3
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min	2.9 51 77.5 12.2 -1.1 62.6 5.3	B2 76.9 11.4 -1.7 61.7 5.2	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2	B2 76.9 11.4 -1.7 61.7 5.2 8.3	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull)	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46	11.4 -1.7 61.7 5.2 8.3 45	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46	61.7 5.2 8.3 45	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46	61.7 5.2 8.3 45	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46	61.7 5.2 8.3 45	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46	61.7 5.2 8.3 45	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219	0.5 2.5 COW 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115 0.78	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114 0.69	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77 141 0.55	0.5 2.5 2.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145 0.55
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L)	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77	0.5 2.5 75.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115 0.78	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114 0.69	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77 141 0.55	0.5 2.5 2.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145 0.55
MIXOGRAM (Quadromat) Peak time, min Tail height (6min), mm Number of samples BÜHLER EXTRACTION, % FLOUR Protein (12% mb), % Colour, KJ FARINOGRAM Water absorption (14% mb), % Development time, min Stability, min Mixing tolerance index, BU EXTENSOGRAM (45 min pull) Area, cm2 Maximum height, BU Extensibility, mm ALVEOGRAM Strength (S), cm2 Stability (P), mm Distensibility (L), mm Configuration ratio (P/L) MIXOGRAM Peak time, min	2.9 51 77.5 12.2 -1.1 62.6 5.3 8.2 46 121 415 202 45.9 90 115 0.78	82 76.9 11.4 -1.7 61.7 5.2 8.3 45 110 390 200 38.1 79 114 0.69	min 2.5 48	max 3.8 55	12.3 -0.4 61.1 4.8 8.2 42 137 415 219 48.5 77 141 0.55	0.5 2.5 2.5 12.8 0.3 62.0 3.4 7.8 39 152 435 237 53.2 79 145 0.55

0

FARINOGRAM

36

EXTENSOGRAM

36

ALVEOGRAM

36

WEIGHTED AVERAGE RESULTS FOR THE LAST THREE SEASONS

١.		200	7/2008	B			2000	6/2007	7			200	5/2000	6	
Region	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n	Protein (12% mb), %	FN, sec	Hlm, kg/hl	Mixo PT, min	n
1	11.5	397	77.4	2.7	6	-	-	-	-	-	11.9	413	79.0	3.0	3
2	10.6	374	75.0	3.2	23	11.3	393	77.2	2.6	18	11.8	427	76.3	2.9	18
3	10.4	373	77.8	3.0	78	11.1	362	77.7	2.5	65	11.9	406	77.8	2.7	72
4	10.5	366	78.1	3.0	35	10.4	353	78.9	2.7	17	11.2	398	79.0	2.7	48
5	11.0	370	78.7	2.5	15	11.3	366	76.3	2.5	27	11.0	385	80.1	2.5	19
6	10.5	362	78.5	2.8	34	11.1	359	76.4	2.9	33	11.4	383	80.3	2.6	22
7	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
8		-	- 1	-	-	-	-	-	_	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	11.0	413	79.4	2.5	17	11.9	387	80.8	2.2	27	11.3	412	79.7	2.3	28
11	11.3	388	78.2	2.4	9	11.2	389	77.1	2.7	14	11.7	382	78.5	2.6	9
12	11.8	363	74.9	2.8	3	11.1	356	81.3	2.5	4	12.5	375	79.0	2.7	4
13	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
14	12.1	381	74.7	3.0	6	12.4	346	80.0	2.4	3	13.7	342	75.7	2.5	5
15	11.8	400	77.6	3.0	10	12.0	300	79.7	2.9	13	14.1	312	79.1	2.8	2
16	-	-	1-1	-	-	12.4	329	78.7	2.5	1	13.4	314	78.3	2.6	3
17	11.8	399	77.1	2.9	3	11.4	365	76.0	2.7	4	12.5	387	78.6	2.8	6
18	11.1	365	77.3	2.8	6	-	-	-	-	-	12.6	385	78.1	2.9	4
19	11.4	385	77.6	2.7	10	11.8	312	78.8	2.4	11	12.3	358	77.1	2.8	11
20	11.2	360	77.4	2.7	13	10.7	360	78.7	3.0	25	11.3	376	79.2	2.9	24
21	12.0	354	78.4	3.6	8	12.2	305	77.5	2.9	12	14.0	350	78.3	3.0	8
22	12.1	383	77.8	2.7	6	13.3	345	77.3	2.6	3	15.4	334	76.8	3.3	7
23	11.5	367	77.7	3.0	25	11.8	322	79.6	2.9	17	14.4	332	77.7	3.0	13
24	11.6	344	77.7	2.9	26	11.7	327	79.0	2.9	27	14.7	340	78.3	2.9	27
25	10.6	325	78.1	3.5	32	10.8	335	78.4	3.3	39	12.8	332	77.6	3.1	25
26	11.1	312	79.2	3.6	26	12.2	320	79.5	3.0	18	14.9	328	76.7	3.1	18
27	11.1	298	80.2	3.2	10	12.7	346	79.8	2.7	8	14.9	267	77.0	3.5	8
28	10.8	337	80.5	3.3	32	12.0	340	78.4	3.0	33	12.9	336	77.4	3.1	31
29	12.6	388	78.1	2.3	3		-		-	-	-	-	-	-	-
30	11.3	428	78.2	2.3	5	11.6	390	82.7	2.0	4	12.6	401	76.9	2.8	5
31	-	-	-	-	-	1 -		-	-	-	-	-	-	-	-
32	12.3	344	77.8	2.8	3	12.0	319	79.1	2.7	7	13.0	362	77.9	2.6	9
33		-	-	-	-	11.3	357	78.8	2.9	11	12.0	417	79.1	3.0	8
34	11.5	378	78.0	2.6	11	11.8	375	77.9	2.6	17	12.6	415	78.6	2.9	11
35	11.4	402	77.4	2.7	10	11.6	352	79.4	2.9	22	12.4	444	78.6	2.6	17
36	12.8	292	78.6	2.9	15	-	-	-	-	-	12.9	294	77.4	2.8	15
Ave.	11.0	360	78.1	3.0	480	11.4	351	78.4	2.8	480	12.4	375	78.2	2.8	480

BREAD WHEAT GRADING TABLE 2007/2008

		Minimum			Maximum percentage permissible deviation (m/m)											
		William		Α	В	С	D	E	F	G	Н	1	J			
Grade	Hectolitre mass, kg	Falling number, seconds	Protein content, %	Heavily frost damaged kernels	Field fungi	Storage fungi	Screenings	Other grain and unthreshed ears	Gravel, stones, turf and glass	Foreign matter plus F	Heat damaged kernels	Damaged kernels plus H	Combined deviations (D+E+G+I)			
Grade 1	77	220	12	5	2	0.5	3	1	0.5	1	0.5	2	5			
Grade 2	76	220	11	5	2	0.5	3	1	0.5	1	0.5	2	5			
Grade 3	74	220	10	5	2	0.5	3	1	0.5	1	0.5	2	5			
Grade 4	72	200	9	5	2	0.5	3	1	0.5	1	0.5	2	5			
Utility grade	70	150	8	10	2	0.5	10	4	0.5	3	0.5	5	10			
Other Wheat	<70	<150	<8	>10	>2	>0.5	>10	>4	>0.5	>3	>0.5	>5	>10			
Minimum size of working samples	1 kg	300 g clean	Apparatus instructions	25 g sifted	25 g sifted	25 g sifted	500 g unsifted	50 g sifted	100 g sifted	100 g sifted	100 g sifted	25 g sifted	-			

MYCOTOXIN RESULTS FOR THE 2007/2008 SEASON

		Aflatoxin	Deoxynivalenol	Ochratoxin
Region	Class and Grade	ppb	ppm	ppb
		LOD < 5.0	LOD < 0.50	LOD = 0.47
1	B1	0	1.0	0
2	B3	<5	1.5	0.58
3	B3	<5	1.0	<0.47
3	B4	<5	1.4	<0.47
4	B3	0	1.4	0
5	B2	0	1.4	<0.47
6	B4	<5	1.0	<0.47
10	B2	0	1.5	2.8
11	B2	0	2.5	0
12	UT	0	1.5	0
14	B3	0	1.4	0.55
15	B2	0	1.7	0.92
17	B2	0	1.6	0
18	B3	0	1.1	0.87
19	COW	<5	0.51	<0.47
20	B2	0	0.73	<0.47
21	B2	0	2.7	0.59
22	B2	0	0.75	0
23	B1	0	0.92	0
24	B2	<5	<0.5	1.8
25	B3	<5	1.6	<0.47
26	B3	<5	2.0	0.87
27	B2	5	1.9	0
28	B3	5	1.4	0
29	B1	0	1.4	0
30	B2	0	1.8	0.86
32	B1	0	1.1	<0.47
34	B2	0	1.2	0
35	UT	0	1.6	<0.47
36	B1	<5	1.3	<0.47
Average 2007	7/2008 [max. value]	0.33 [5.00]	1.36 [2.70]	0.33 [2.80]
Average 2006	5/2007 [max. value]	0.00 [<5]	1.46 [2.40]	0.17 [1.40]
Average 2005	i/2006 [max. value]	0.43 [7.00]	0.94 [1.50]	0.09 [0.67]

Please note:

Limit of detection (LOD) means the lowest level that can be detected accurately by the fluorometer. Should the fluorometer give a reading above zero but lower than the limit of detection, the result is reported as 0.

RSA WHEAT PRODUCTION AREAS

WHEAT SEED SOLD BY COMMERCIAL GRAIN SILO OWNERS TO WHEAT PRODUCERS FOR THE 2007 PLANTING SEASON

<u>Cultivar</u>	<u>%</u>	<u>Cultivar</u>	<u>%</u>
SST 027	26.26	SST 825	0.144
SST 88	21.96	PAN 3349	0.130
SST 015	15.80	SST 399	0.123
Duzi	9.25	SST 322	0.079
SST 57	7.66	PAN 3118	0.065
SST 876	3.10	Inia	0.056
SST 806	3.01	SST 946	0.044
SST 835	2.09	PAN 3364	0.040
Matlabas	1.94	Baviaans	0.027
Krokodil	1.58	PAN 3120	0.027
Elands	1.42	PAN 3235	0.026
Kariega	1.27	SST 367	0.025
SST 822	1.18	SST 935	0.010
CRN 826	1.13	Limpopo	0.0098
Olifants	0.26	SST 94	0.0068
Gariep	0.228	PAN 3434	0.0053
Betta DN	0.226	AFG 5548	0.0016
Steenbras	0.214	PAN 3191	0.0005
Komati	0.212	Caledon	0.0003
PAN 3377	0.193	SST 363	0.0002
SST 334	0.188		
			100

Note: These figures are not absolute, but the best and only figures available.

METHODS

GRADING:

Full grading was done in accordance with the Regulations relating to the grading, packing and marking of wheat intended for sale in the Republic of South Africa (No. R. 905 of 10 July 1998 as amended by Nos. R. 1421 of 6 November 1998, R. 876 of 14 September 2001 and R. 979 of 19 July 2002, R. 1210 of 29 August 2003 and Dispensation: Reference No. 21/4/1/1 and Serial No. 791 of 25 July 2003).

Hectolitre mass, screenings, protein and falling number were determined. The determination of deviations relating to wheat kernels comprised foreign matter including gravel, stones, turf and glass; other grain and unthreshed ears; damaged kernels including heat-damaged kernels, immature kernels, insect-damaged kernels and sprouted kernels; heavily frost-damaged kernels; field fungi; storage fungi; ergot; noxious seeds; possible presence of undesirable odours and live insects.

Hectolitre mass means the mass in kilogram per hectolitre. Hectolitre mass provides a measure of the bulk density of the grain and is also useful as a guide to grain soundness and potential milling extraction.

Screenings means all material that passes through a standard sieve. A standard sieve is a hand sieve which consists of a slotted, stainless steel sieve with a thickness of 1,0 mm, mounted in durable plastic, with apertures 1,8 mm wide and 12,7 mm long, which fits into an aluminum pan with a solid bottom, and has a inner diameter of 300 mm and an outer diameter of 302.5 mm.

Damaged kernels means wheat kernels and pieces of wheat kernels -

- (a) which have been damaged by insects;
- (b) which have been distinctly discoloured (orange-brown, dark brown or black) by external heat or as a result of heating caused by internal fermentation in wheat with an excessive moisture content, excluding wheat kernels in respect of which the discolouration is confined to the germ

end:

- (c) which are immature and have a distinctly green colour; and
- (d) in which germination has proceeded to such an extent that the skin covering the embryo has been broken or the developing rootlets are clearly visible.

THOUSAND KERNEL MASS:

This is the weight in grams of one thousand kernels of grain and provides a measure of grain size and density. This determination does not include kernels that are broken or chipped.

FALLING NUMBER MILLING:

At least 300 g of wheat is cleaned by using the standard 1,8 mm sieve and by removing coarser impurities by hand. The sample is then milled on the falling number hammer mill fitted with a 0,8 mm screen.

PROTEIN:

The Dumas combustion analysis technique is used, according to AACC method 46-30, 1999.

This method prescribes a generic combustion method for the determination of crude protein. Combustion at high temperature in pure oxygen sets nitrogen free, which is measured by thermal conductivity detection. The total nitrogen content of the flour sample is determined and converted to equivalent protein by multiplication with a factor of 5.7 to obtain the protein content.

FALLING NUMBER:

This method is based upon the rapid gelatinization of an aqueous suspension of meal or flour in a boiling water bath and subsequent measurement of the liquefaction of the starch paste by the alphaamylase in the sample. The method measures the alpha-amylase activity.

ICC Standard No.107/1, 1995 is used to determine the falling number. Only the altitude-corrected value is reported.

QUADROMAT MILLING:

Cleaned wheat samples are conditioned by adding 3 ml water per 100 g wheat, 18 hours prior to milling. The samples are then milled on the Quadromat junior laboratory mill.

MIXOGRAPH:

A 35 g mixograph is used. The amount of water added to the flour is adjusted according to the flour protein content. Industry Accepted Method 020 based on AACC method 54-40A, 1999 is followed.

Mixogram peak time is the time measured in minutes that a dough takes to reach its maximum consistency or first indication of dough weakening. The peak time is a measure of optimum dough development and thus a measure of protein quality.

Mixogram tail height at 6 minutes is the distance in millimetres measured from the base line of the paper at 6 minutes to the graph centre point at 6 minutes. This figure is an indication of the weakening effect of the dough. Higher values indicate flours that are more tolerant to mixing.

BÜHLER MILLING:

Cleaned wheat samples are damped to between 15,0 % and 16,0 % moisture according to the wheat moisture and kernel hardness and allowed to stand for 20 hours. Samples are then milled on a standard Bühler MLU 202 mill and passed through a bran finisher.

BÜHLER EXTRACTION:

The extraction represents the flour yield after milling plus flour obtained form bran that passed through a bran finisher. Flour extraction is calculated from the mass of the total products. Bühler MLU 202 mill set for South African wheat, mill settings and sieve sizes deviate from AACC method 26-21A, 1999.

COLOUR:

The Kent Jones colour is determined by following

FTP Method No. 0007/3, 7/1991. This method determines the influence of the branny material present in flour by measuring reflectance with a light source in the green band of the light spectrum. The lower the Kent Jones colour, the lighter the flour.

FARINOGRAPH:

AACC method 54-21, 1999 constant flour weight procedure is followed, using 300 g of flour on a 14 % moisture basis.

The **farinograph** measures and records the resistance of a dough to mixing, as it is formed from flour and water, developed and broken down. The dough is subjected to a prolonged, relatively gentle mixing action at a constant temperature.

The water absorption is the amount of water required for a dough to reach a definite consistency (500 Brabender units). The amount of water added to the flour is expressed as a percentage of the flour mass and reported on a 14 % moisture basis.

The **development time** is the time from the beginning of water addition until the dough reaches its optimum consistency and the point immediately before the first indication of weakening. A long mixing time can be associated with flours that have a high percentage of glutenforming proteins.

The **stability** is the time during which the top of the curve intercepts a horizontal line through the centre of the curve. This gives an indication of the dough's tolerance to mixing: the longer the stability, the longer the mixing time that the dough can withstand. A dough with a longer stability can also withstand a longer fermentation period.

The **mixing tolerance index value** is the difference, in Brabender units, between the top of the curve at the peak and the top of the curve measured 5 minutes after the peak is reached. The value gives an indication of the extent to which breakdown of the dough occurs. The higher the value, the more and the quicker the breakdown

of the dough occurs. This value is similar to the mixogram tail height.

EXTENSOGRAPH:

ICC Standard No. 114/1, 1992 is followed.

The **strength** gives an indication of the total force (work) needed to stretch the dough and is represented by the area under the curve.

The **maximum height** gives and indication of the dough's resistance to stretching and is measured as the mean of the maximum heights of the curves of the two test pieces.

The **extensibility** is the mean length at the base of the 2 curves and indicates the stretchability of the dough.

ALVEOGRAPH:

ICC Standard No.121,1992 is followed.

The **alveograph** measures the resistance of the dough to stretching and also how extensible the dough is. The alveograph stretches the dough in more than one direction (as is happening during proofing), whereas the extensograph stretches the dough in only one direction.

Strength (**S**): The area under the curve gives an indication of the dough strength.

Stability (**P**): Obtained by multiplying the maximum height of the curve with a constant factor of 1.1. This value is an indication of the resistance of the dough to extension.

Distensibility (L): The length of the curve, measured along the base line, gives an indication of the extensibility of the dough and also predicts the handling characteristics of the dough.

P/L-value: This ratio is obtained by dividing the P-value by the L-value, thus providing an

approximate indication of the shape of the curve that combines stability and extensibility.

100 g BAKING TEST:

This procedure, according to Industry Accepted Method 022 based on AACC Method 10-10B, 1999, provides an optimized bread-making method for evaluating bread wheat flour quality and a variety of dough ingredients by a straight-dough method in which all ingredients are incorporated in the initial mixing step.

Keys for the evaluation of the 100g Baking test:

- 0 Excellent
- 1 Very Good
- 2 Good
- 3 Questionable
- 4 Poor
- 5 Very Poor
- 6 Extremely Poor

Please note:

This 100 g Baking test evaluation does not give an indication of the baking quality of the flour, but refers to the relationship between the protein content and the bread volume.

MYCOTOXIN ANALYSES

Mycotoxins are natural contaminants of food and feedstuffs with serious implications for public health and economics, in particular with relation to the international food trade.

The mycotoxin analyses were carried out in accordance with the Vicam immunoaffinity column technique using the different Vicam instruction manuals for the different mycotoxins. Detection of the toxins was done on a fluorometer. Thirty samples of the 480 wheat crop samples were tested for aflatoxin, deoxynivalenol and ochratoxin.

Fungi	Toxin	Method reference
Aspergillus flavus	Aflatoxin	Vicam Aflatest Instruction Manual May 5, 1999
Aspergillus ochraceus and several species of Penicillium sp.	Ochratoxin	Vicam Ochratest Instruction Manual November 1, 2005
Fusarium graminearum	Deoxynivalenol (DON)	FluoroQuant DON Test Kit Method for Deoxynivalenol Testing (COKFD2030) February 14, 2007

2006/2007 IMPORTED WHEAT QUALITY - ARGENTINA (1 Oct 2006 to 30 Sep 2007)

Country of origin	Argentina						R	SA C	rop	Aver	age			
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	5	3	-	-	19	-	27	135	130	104	42	64	5	480
WHEAT				,	,	,			,	,				
GRADING														
Protein (12% mb), %	13.06	11.48	-	-	12.10	-	12.21	12.73	11.48	10.73	9.84	10.93	11.00	11.45
Moisture, %	12.1	11.8	-	-	11.9	-	11.9	10.5	10.4	10.5	12.6	10.5	10.8	10.7
Falling number, sec	398	428	-	-	404	-	406	347	362	357	332	346	260	351
1000 Kernel mass (13% mb), g	32.3	35.6	-	-	33.7	-	33.6	36.4	37.8	37.9	37.9	36.4	35.7	37.2
Hlm (dirty), kg/hl	78.0	79.0	-	-	77.3	-	77.6	79.3	78.9	77.7	77.8	77.0	75.8	78.4
Screenings (<1,8mm), %	2.95	2.69	-	-	3.63	-	3.40	1.44	1.47	1.72	1.52	3.45	3.39	1.81
Gravel, stones, turf and glass, %	0.00	0.00	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Foreign matter, %	0.03	0.07	-	-	0.10	-	0.09	0.07	0.08	0.09	0.10	0.10	0.08	0.08
Other grain & unthreshed ears, %	0.06	0.20	-	-	0.24	-	0.20	0.26	0.29	0.35	0.36	0.55	0.22	0.33
Heat damaged kernels, %	0.02	0.11	-	-	0.01	-	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.14	0.02	-	-	0.09	-	0.09	0.07	0.06	0.05	0.04	0.02	0.02	0.05
Insect damaged kernels, %	0.31	0.77	_	-	0.39	_	0.41	0.39	0.43	0.54	0.57	0.66	4.14	0.53
Heavily frost damaged kernels, %	0.00	0.03	_	_	0.01	_	0.01	0.03	0.02	0.03	0.00	0.01	0.30	0.03
Sprouted kernels, %	0.70	0.03	_	_	0.18	_	0.26	0.05	0.06	0.05	0.05	0.13	2.12	0.09
Total damaged kernels, %	0.76	0.92	_	_	0.67	_	0.71	0.50	0.55	0.64	0.66	0.82	6.28	0.66
Combined deviations, %	3.80	3.88	_	_	4.64	_	4.40	2.27	2.40	2.80	2.64	4.94	9.96	2.89
Field fungi, %	0.05	0.05	_	_	0.03	_	0.03	0.08	0.12	0.11	0.14	0.19	0.10	0.12
Storage fungi, %	0.03	0.00		_	0.03	_	0.03	0.00	0.12	0.03	0.04	0.02	0.02	0.12
Ergot, %	0.02	0.00			0.00	_	0.02	0.00	0.00	0.00	0.00	0.02	0.02	0.02
Noxious seeds (Crotolaria sp, Datura sp)	0.00	0.00		_	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0	0			0		0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	 	_	-	-	-	-			-	-	-	-	-	
Live insects	No	No No	-	-	No No	-	No No							
Undesirable odour	No	INO			INO		INO	NO	INO	INO	INO	INO	INO	INO
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	5	3	-	-	19	-	27	26	25	21	11	15	2	100
BÜHLER EXTRACTION, %	73.0	73.6	-	-	73.7	-	73.6	75.2	75.4	75.6	74.7	74.6	72.3	75.1
FLOUR														
Colour, KJ	0.1	-0.1	_	- I	0.3	_	0.2	-1.1	-1.3	-1.4	-1.5	-0.8	-1.0	-1.2
100g BAKING TEST														
Baking water absorption, %	60.9	60.3	_		60.7		60.7	61.7	60.3	59.6	58.7	59.8	60.5	60.3
Loaf volume, cm3	839	747	_	-	776	-	785	893	824	794	718	776	788	816
	3	3	-	-	3	-	3	1	1		2	1	2	
Evaluation	3	ا ا	-	_	<u> </u>	_	٥	1	'	1		'		1
FARINOGRAM														
Water absorption, %	60.1	60.7	-	-	60.5	-	60.5	63.0	61.7	60.5	60.0	60.5	61.5	61.4
Development time, min	2.4	2.0	-	-	2.1	-	2.1	4.6	3.7	2.9	2.1	2.7	2.4	3.4
Stability, mm	14.5	6.7	-	-	9.8	-	10.4	7.2	6.3	5.7	4.5	5.6	6.2	6.1
Mixing tolerance index, BU	19	44	-	-	36	-	34	45	50	52	62	53	47	51

Country of origin			Α	rgen	tina				R	SA C	rop	Avera	age	
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	5	3	-	-	19	-	27	26	25	21	11	15	2	100
ALVEOGRAM														
Strength (S), cm	53.8	44.3	-	-	46.6	-	47.7	42.3	37.5	33.7	32.0	33.9	38.0	36.8
Stability (P), mm	113	119	-	-	117	-	117	88	87	82	87	80	95	85
Distensibility (L), mm	86	64	-	-	69	-	72	110	100	95	80	99	93	99
P/L	1.33	1.95	-	-	1.77	-	1.71	0.82	0.93	0.92	1.25	0.90	1.20	0.93
EXTENSOGRAM														
Strength, cm	124	91	-		107	-	107	94	80	75	72	80	98	82
Max. height, BU	550	430	-	_	483	_	484	331	323	315	328	327	383	326
Extensibility, mm	156	144	_	_	151	-	151	195	173	164	152	168	175	174
MIXOGRAM														
Peak time, min	4.0	4.1	-	-	4.2	-	4.1	2.4	2.5	2.6	2.9	2.7	2.9	2.6
Absorption, %	62.3	60.3	-	-	61.0	-	61.1	62.1	60.6	59.8	59.0	60.0	60.2	60.5
MYCOTOXINS														
Aflatoxin, ppb [max.value]				1.20 [8							0.00 [<			
Deoxynivalenol, ppm [max. value]				1.91 [3							1.46 [2.			
Ochratoxin A, ppb [max. value]				0.17 [0	.88]						0.17 [1.	40]		
No. of samples				11							30			

2006/2007 IMPORTED WHEAT QUALITY - BERMUDA (1 Oct 2006 to 30 Sep 2007)

Country of origin	Bermuda								R	SA C	rop	Aver	age	
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	-	-	-	5	-	5	135	130	104	42	64	5	480
WHEAT			!											
GRADING	-		ĭ	1	T	1								
Protein (12% mb), %	-	-	-	-	12.51	-	12.51	12.73	11.48	10.73	9.84	10.93	11.00	11.45
Moisture, %	-	-	-	-	11.8	-	11.8	10.5	10.4	10.5	12.6	10.5	10.8	10.7
Falling number, sec	-	-	-	-	395	-	395	347	362	357	332	346	260	351
1000 Kernel mass (13% mb), g	-	-	-	-	28.1	-	28.1	36.4	37.8	37.9	37.9	36.4	35.7	37.2
Hlm (dirty), kg/hl	-	-	-	-	77.0	-	77.0	79.3	78.9	77.7	77.8	77.0	75.8	78.4
Screenings (<1,8mm), %	-	-	-	-	3.27	-	3.27	1.44	1.47	1.72	1.52	3.45	3.39	1.81
Gravel, stones, turf and glass, %	-	-	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Foreign matter, %	-	-	-	-	0.08	-	0.08	0.07	0.08	0.09	0.10	0.10	0.08	0.08
Other grain & unthreshed ears, %	-	-	-	-	0.21	-	0.21	0.26	0.29	0.35	0.36	0.55	0.22	0.33
Heat damaged kernels, %	-	-	-	-	0.02	-	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	-	-	-	-	0.02	-	0.02	0.07	0.06	0.05	0.04	0.02	0.02	0.05
Insect damaged kernels, %	-	-	-	-	0.43	-	0.43	0.39	0.43	0.54	0.57	0.66	4.14	0.53
Heavily frost damaged kernels, %	-	-	-	-	0.10	-	0.10	0.03	0.02	0.03	0.00	0.01	0.30	0.03
Sprouted kernels, %	-		-	-	0.21	-	0.21	0.05	0.06	0.05	0.05	0.13	2.12	0.09
Total damaged kernels, %	-	-	-	-	0.67	-	0.67	0.50	0.55	0.64	0.66	0.82	6.28	0.66
Combined deviations, %	-	-	-	-	4.23	-	4.23	2.27	2.40	2.80	2.64	4.94	9.96	2.89
Field fungi, %	-	-	-	-	0.11	-	0.11	0.08	0.12	0.11	0.14	0.19	0.10	0.12
Storage fungi, %	-	-	-	-	0.00	-	0.00	0.01	0.01	0.03	0.04	0.02	0.02	0.02
Ergot, %	-	-	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp., Datura sp.,)	-	-	-	-	0	-	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	-	-	-	-	0	-	0	0	0	0	0	0	0	0
Live insects	-	-	-	-	No	-	No	No	No	No	No	No	No	No
Undesirable odour	-	-	-	-	No	-	No	No	No	No	No	No	No	No
													00111	
No of comples	B1	B2	B3	B4	UT 5	cow	Average 5	B1 26	B2 25	B3 21	B4 11	UT 15	cow 2	Average 100
No. of samples BÜHLER EXTRACTION, %	-	-	_	_	73.6	_	73.6	75.2	75.4	75.6	74.7	74.6	72.3	75.1
					75.0		70.0	75.2	75.4	75.0	74.7	74.0	72.5	75.1
FLOUR														
Colour, KJ	-	-	-	-	0.7	-	0.7	-1.1	-1.3	-1.4	-1.5	-0.8	-1.0	-1.2
100g BAKING TEST														
Baking water absorption, %	-	-	-	-	59.4	-	59.4	61.7	60.3	59.6	58.7	59.8	60.5	60.3
Loaf volume, cm3	-	-	-	-	846	-	846	893	824	794	718	776	788	816
Evaluation	-	-	-	-	1	-	1	1	1	1	2	1	2	1
FARINOGRAM														
Water absorption, %	-	-	-	-	57.2	-	57.2	63.0	61.7	60.5	60.0	60.5	61.5	61.4
Development time, min	-	-	-	-	2.2	-	2.2	4.6	3.7	2.9	2.1	2.7	2.4	3.4
Stability, mm	-	-	-	-	9.0	-	9.0	7.2	6.3	5.7	4.5	5.6	6.2	6.1
Mixing tolerance index, BU	-	-	-	-	32	-	32	45	50	52	62	53	47	51

Country of origin	Bermuda									SA C	Crop	Avera	age	
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	-	-	-	-	5	-	5	26	25	21	11	15	2	100
ALVEOGRAM														
Strength (S), cm	-	-	-	-	43.0	-	43.0	42.3	37.5	33.7	32.0	33.9	38.0	36.8
Stability (P), mm	-	-	-	-	89	-	89	88	87	82	87	80	95	85
Distensibility (L), mm	-	-	-	-	92	-	92	110	100	95	80	99	93	99
P/L	-	-	-	-	0.98	-	0.98	0.82	0.93	0.92	1.25	0.90	1.20	0.93
EXTENSOGRAM														
Strength, cm	-	-	-	-	117	-	117	94	80	75	72	80	98	82
Max. height, BU	-	-	-	-	501	-	501	331	323	315	328	327	383	326
Extensibility, mm	-	-	-	-	163	-	163	195	173	164	152	168	175	174
MIXOGRAM														
Peak time, min	-	-	-	-	3.9	-	3.9	2.4	2.5	2.6	2.9	2.7	2.9	2.6
Absorption, %	-	-	-	-	61.4	-	61.4	62.1	60.6	59.8	59.0	60.0	60.2	60.5
MYCOTOXINS														
Aflatoxin, ppb [max.value]				0.00 [0.	.00]						0.00 [<	5]		
Deoxynivalenol, ppm [max. value]				0.50 [0.	.50]						1.46 [2.	40]		
Ochratoxin A, ppb [max. value]			<	0.47 [<	0.47]						0.17 [1.	40]		
No. of samples				1							30			

2006/2007 IMPORTED WHEAT QUALITY - CANADA (1 Oct 2006 to 30 Sep 2007)

Country of origin	Canada								R	SA C	rop	Avera	age	
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	Вз	B4	UT	cow	Average
No. of samples	3	-	-	-	10	1	14	135	130	104	42	64	5	480
WHEAT														
GRADING		ĭ	1	ĭ	1					T				
Protein (12% mb), %	13.12	-	-	-	13.35	13.33	13.30	12.73	11.48	10.73	9.84	10.93	11.00	11.45
Moisture, %	12.2	-	-	-	12.1	11.8	12.1	10.5	10.4	10.5	12.6	10.5	10.8	10.7
Falling number, sec	422	-	-	-	391	465	403	347	362	357	332	346	260	351
1000 Kernel mass (13% mb), g	32.2	-	-	-	32.4	33.9	32.5	36.4	37.8	37.9	37.9	36.4	35.7	37.2
Hlm (dirty), kg/hl	79.4	-	-	-	79.8	76.4	79.5	79.3	78.9	77.7	77.8	77.0	75.8	78.4
Screenings (<1,8mm), %	2.68	-	-	-	3.48	2.20	3.22	1.44	1.47	1.72	1.52	3.45	3.39	1.81
Gravel, stones, turf and glass, %	0.00	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Foreign matter, %	0.03	-	-	-	0.05	0.04	0.05	0.07	0.08	0.09	0.10	0.10	0.08	0.08
Other grain & unthreshed ears, %	0.23	-	-	-	0.23	0.46	0.24	0.26	0.29	0.35	0.36	0.55	0.22	0.33
Heat damaged kernels, %	0.00	-	-	-	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.00	-	-	-	0.02	0.02	0.02	0.07	0.06	0.05	0.04	0.02	0.02	0.05
Insect damaged kernels, %	0.16	-	-	-	0.09	0.00	0.10	0.39	0.43	0.54	0.57	0.66	4.14	0.53
Heavily frost damaged kernels, %	0.08	-	-	-	0.05	0.10	0.06	0.03	0.02	0.03	0.00	0.01	0.30	0.03
Sprouted kernels, %	0.26	-	-	-	0.13	0.04	0.15	0.05	0.06	0.05	0.05	0.13	2.12	0.09
Total damaged kernels, %	0.42	-	-	-	0.25	0.06	0.27	0.50	0.55	0.64	0.66	0.82	6.28	0.66
Combined deviations, %	3.36	-	-	-	3.97	2.76	3.75	2.27	2.40	2.80	2.64	4.94	9.96	2.89
Field fungi, %	0.12	-	-	-	0.02	0.00	0.04	0.08	0.12	0.11	0.14	0.19	0.10	0.12
Storage fungi, %	0.00	-	-	-	0.04	0.00	0.03	0.01	0.01	0.03	0.04	0.02	0.02	0.02
Ergot, %	0.00	-	-	-	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	0	-	-	-	0	0	0	0	0	0	0	0	0	0
Live insects	No	-	-	-	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	-	-	-	No	No	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	3	-	-	-	10	1	14	26	25	21	11	15	2	100
BÜHLER EXTRACTION, %	74.6	-	-	-	74.9	75.5	74.9	75.2	75.4	75.6	74.7	74.6	72.3	75.1
FLOUR														
Colour, KJ	-1.0	-	-	-	-1.1	-1.2	-1.1	-1.1	-1.3	-1.4	-1.5	-0.8	-1.0	-1.2
100g BAKING TEST		1		1	1		1							
Baking water absorption, %	61.7	-	-	-	62.7	62.7	62.5	61.7	60.3	59.6	58.7	59.8	60.5	60.3
Loaf volume, cm3	920	-	-	-	897	890	901	893	824	794	718	776	788	816
Evaluation	1	-	-	-	2	2	2	1	1	1	2	1	2	1
FARINOGRAM														
Water absorption, %	62.1	T -		Γ.	62.6	63.5	62.5	63.0	61.7	60.5	60.0	60.5	61.5	61.4
Development time, min	4.2		_	_	4.3	4.8	4.3	4.6	3.7	2.9	2.1	2.7	2.4	3.4
Stability, mm	8.7		_	_	9.3	8.9	9.1	7.2	6.3	5.7	4.5	5.6	6.2	6.1
-	-	-	-	-	35	45	37	45	50	-	62	53	47	
Mixing tolerance index, BU	42		-		35	45	37	45	50	52	02	55	47	51

Class and Grade bread wheat at at at at at at at	Country of origin				Cana	da		R	SAC	rop	Avera	age			
AVECORAM Strength (8), cm 51.7	Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1						Average
Strength (S), cm	No. of samples	3	-	-	-	10	1	14	26	25	21	11	15	2	100
Strength (S), cm	ALVEOGRAM														
Second Continue	Strength (S), cm	51.7	-	-	-	53.2	51.2	52.7	42.3	37.5	33.7	32.0	33.9	38.0	36.8
EXTENSOGRAM Strength, cm 106 0 107 - 104 105 105 107 107 107 107 107 107 107 107 107 107	Stability (P), mm	112	-	-	-	105	105	106	88	87	82	87	80	95	85
EXTENSOGRAM Strength, cm	Distensibility (L), mm	88	-	-	-	101	100	98	110	100	95	80	99	93	99
Strength, cm 106 - - 107 - 107 - 107 94 80 75 72 80 98 82 Max. height, BU 400 - - - 385 - 387 331 323 315 328 327 383 326 Extensibility, mm 191 - - 194 - 194 195 173 164 152 168 175 174 MIXOGRAM Peak time, min 3.3 - - - 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 - - - 6.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Altatoxin, ppb [max.value] 0.00 [<5]	P/L	1.31	-	-	-	1.10	1.04	1.14	0.82	0.93	0.92	1.25	0.90	1.20	0.93
Strength, cm 106 - - 107 - 107 - 107 94 80 75 72 80 98 82 Max. height, BU 400 - - - 385 - 387 331 323 315 328 327 383 326 Extensibility, mm 191 - - 194 - 194 195 173 164 152 168 175 174 MIXOGRAM Peak time, min 3.3 - - - 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 - - - 6.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Altatoxin, ppb [max.value] 0.00 [<5]															
MIXOGRAM MIXOGRAM Peak time, min 3.3 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 62.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Aflatoxin, ppb [max.value] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5] 0.00 [<5]	EXTENSOGRAM														
Extensibility, mm 191 194 - 194 195 173 164 152 168 175 174 MIXOGRAM Peak time, min 3.3 - - - 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 - - - 62.9 62.7 62.1 60.6 59.8 59.0 60.0 60.2 MIXOGRAM	Strength, cm	106	-	-	-	107	-	107	94	80	75	72	80	98	82
MIXOGRAM Peak time, min 3.3 82.9 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Allatoxin, ppb [max.value] 0.00 [<5] 0.00 [<5] Decoxynivalenol, ppm [max. value] 1.10 [2.10] 1.46 [2.40]	Max. height, BU	400	-	-	-	385	-	387	331	323	315	328	327	383	326
Peak time, min 3.3 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 62.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Aflatoxin, ppb [max.value] 0.00 [<5] 0.00 [<5] 0.00 [<5] Deoxynivalenol, ppm [max. value] 1.10 [2.10] 1.46 [2.40]	Extensibility, mm	191	-	-	-	194	-	194	195	173	164	152	168	175	174
Peak time, min 3.3 3.1 2.8 3.1 2.4 2.5 2.6 2.9 2.7 2.9 2.6 Absorption, % 62.4 62.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Aflatoxin, ppb [max.value] 0.00 [<5] 0.00 [<5] 0.00 [<5] Deoxynivalenol, ppm [max. value] 1.10 [2.10] 1.46 [2.40]															
Absorption, % 62.4 62.9 62.7 62.7 62.1 60.6 59.8 59.0 60.0 60.2 60.5 MYCOTOXINS Aflatoxin, ppb [max.value] 0.00 [<5] 0.00 [<5] 0.00 [<5] 1.46 [2.40]	MIXOGRAM					,		,		,			,	,	
MYCOTOXINS Aflatoxin, ppb [max.value] Deoxynivalenol, ppm [max. value] 0.00 [<5] 0.00 [<5] 1.10 [2.10] 1.46 [2.40]	Peak time, min	-	-	-	-	3.1	2.8	3.1				2.9			2.6
Aflatoxin, ppb [max.value] 0.00 [<5]	Absorption, %	62.4	-	-	-	62.9	62.7	62.7	62.1	60.6	59.8	59.0	60.0	60.2	60.5
Deoxynivalenol, ppm [max. value] 1.10 [2.10] 1.46 [2.40]	MYCOTOXINS Aflatoxin, ppb [max.value]				-1 00.0	<51						>1 00.0	<51		
U.U. 17 11.401	Ochratoxin A, ppb [max. value]														

2006/2007 IMPORTED WHEAT QUALITY - GERMANY (1 Oct 2006 to 30 Sep 2007)

Country of origin			G	erm	any			R	SA C	rop	Aver	age		
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	1	5	-	-	4	-	10	135	130	104	42	64	5	480
WHEAT														
GRADING														
Protein (12% mb), %	12.16	11.72	_	-	12.47	-	12.07	12.73	11.48	10.73	9.84	10.93	11.00	11.45
Moisture, %	12.4	12.3	-	-	12.0	-	12.2	10.5	10.4	10.5	12.6	10.5	10.8	10.7
Falling number, sec	343	360	-	-	403	-	376	347	362	357	332	346	260	351
1000 Kernel mass (13% mb), g	42.4	42.7	-	-	42.4	-	42.6	36.4	37.8	37.9	37.9	36.4	35.7	37.2
HIm (dirty), kg/hl	77.1	77.2	-	-	78.5	-	77.7	79.3	78.9	77.7	77.8	77.0	75.8	78.4
Screenings (<1,8mm), %	2.37	2.40	-	-	3.67	-	2.91	1.44	1.47	1.72	1.52	3.45	3.39	1.81
Gravel, stones, turf and glass, %	0.00	0.00	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Foreign matter, %	0.08	0.11	-	-	0.09	-	0.10	0.07	0.08	0.09	0.10	0.10	0.08	0.08
Other grain & unthreshed ears, %	0.98	0.72	-	-	0.72	-	0.75	0.26	0.29	0.35	0.36	0.55	0.22	0.33
Heat damaged kernels, %	0.00	0.00	-	-	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.00	0.01	-	-	0.00	-	0.01	0.07	0.06	0.05	0.04	0.02	0.02	0.05
Insect damaged kernels, %	0.08	0.10	-	-	0.08	-	0.09	0.39	0.43	0.54	0.57	0.66	4.14	0.53
Heavily frost damaged kernels, %	0.16	0.30	-	-	0.08	-	0.20	0.03	0.02	0.03	0.00	0.01	0.30	0.03
Sprouted kernels, %	0.08	0.21	-	-	0.08	-	0.14	0.05	0.06	0.05	0.05	0.13	2.12	0.09
Total damaged kernels, %	0.16	0.32	-	-	0.16	-	0.24	0.50	0.55	0.64	0.66	0.82	6.28	0.66
Combined deviations, %	3.59	3.56	-	-	4.63	-	3.99	2.27	2.40	2.80	2.64	4.94	9.96	2.89
Field fungi, %	0.00	0.03	-	-	0.04	-	0.03	0.08	0.12	0.11	0.14	0.19	0.10	0.12
Storage fungi, %	0.00	0.02	-	-	0.02	-	0.02	0.01	0.01	0.03	0.04	0.02	0.02	0.02
Ergot, %	0.00	0.00	-	-	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp. Datura sp)	0	0	_	-	0	_	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	0	0	_	-	0	_	0	0	0	0	0	0	0	0
Live insects	No	No	_	-	No	_	No	No	No	No	No	No	No	No
Undesirable odour	No	No	_	-	No	_	No	No	No	No	No	No	No	No
					1		1		1	110	1.0	1	1	1.10
	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	В4	UT	cow	Average
No. of samples	1	5	-	-	4	-	10	26	25	21	11	15	2	100
BÜHLER EXTRACTION, %	76.0	75.1	-	-	74.9	-	75.1	75.2	75.4	75.6	74.7	74.6	72.3	75.1
FLOUR														
Colour, KJ	0.7	0.5	-	-	0.1	-	0.4	-1.1	-1.3	-1.4	-1.5	-0.8	-1.0	-1.2
100g BAKING TEST														
Baking water absorption, %	60.7	60.1	l -	T -	61.4	_	60.7	61.7	60.3	59.6	58.7	59.8	60.5	60.3
Loaf volume, cm3	830	822	-	_	863	-	839	893	824	794	718	776	788	816
Evaluation	1	1	_	_	1	_	1	1	1	1	2	1	2	1
FARINOGRAM		<u> </u>					<u> </u>		<u> </u>					<u> </u>
Water absorption, %	58.2	59.9	-	-	61.3	_	60.3	63.0	61.7	60.5	60.0	60.5	61.5	61.4
Development time, min	2.5	2.0	_	-	2.6	-	2.3	4.6	3.7	2.9	2.1	2.7	2.4	3.4
Stability, mm	5.3	4.5	-	_	6.3	_	5.3	7.2	6.3	5.7	4.5	5.6	6.2	6.1
Mixing tolerance index, BU	54	52	_	_	46	-	50	45	50	52	62	53	47	51

Country of origin			G	erma	any				R	SA C	rop	Avera	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	1	5	-	-	4	-	10	26	25	21	11	15	2	100
ALVEOGRAM														
Strength (S), cm	38.4	39.1	-	-	46.3	-	41.9	42.3	37.5	33.7	32.0	33.9	38.0	36.8
Stability (P), mm	92	106	-	-	108	-	106	88	87	82	87	80	95	85
Distensibility (L), mm	79	66	-	-	84	-	74	110	100	95	80	99	93	99
P/L	1.16	1.63	-	-	1.45	-	1.51	0.82	0.93	0.92	1.25	0.90	1.20	0.93
EXTENSOGRAM														
Strength, cm	-	87	-	-	72	-	83	94	80	75	72	80	98	82
Max. height, BU	-	397	-	-	324	-	379	331	323	315	328	327	383	326
Extensibility, mm	-	151	-	-	153	-	152	195	173	164	152	168	175	174
MIXOGRAM														
Peak time, min	3.5	4.0	-	-	3.3	-	3.7	2.4	2.5	2.6	2.9	2.7	2.9	2.6
Absorption, %	60.7	60.5	-	-	61.4	-	60.9	62.1	60.6	59.8	59.0	60.0	60.2	60.5
MYCOTOXINS				-F.	51						0.007	-51		
Aflatoxin, ppb [max.value]				<5 [<							0.00 [<			
Deoxynivalenol, ppm [max. value]				1.11 [2.							1.46 [2.			
Ochratoxin A, ppb [max. value]				0.83 [1.	.00]						0.17 [1.	40]		
No. of samples				3							30			

2006/2007 IMPORTED WHEAT QUALITY - USA (1 Oct 2006 to 30 Sep 2007)

Country of origin	USA								R	SA C	rop	Aver	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	ВЗ	В4	UT	cow	Average
No. of samples	4	7	3	-	12	1	27	135	130	104	42	64	5	480
WHEAT														
GRADING														
Protein (12% mb), %	12.82	11.59	11.02	-	12.04	11.71	11.91	12.73	11.48	10.73	9.84	10.93	11.00	11.45
Moisture, %	11.7	12.0	11.7	-	11.7	11.3	11.8	10.5	10.4	10.5	12.6	10.5	10.8	10.7
Falling number, sec	441	375	343	-	416	327	398	347	362	357	332	346	260	351
1000 Kernel mass (13% mb), g	34.2	31.0	32.4	-	29.2	28.2	30.7	36.4	37.8	37.9	37.9	36.4	35.7	37.2
Hlm (dirty), kg/hl	79.6	77.4	76.9	-	75.8	68.3	76.6	79.3	78.9	77.7	77.8	77.0	75.8	78.4
Screenings (<1,8mm), %	2.36	2.24	2.52	-	5.03	7.26	3.72	1.44	1.47	1.72	1.52	3.45	3.39	1.81
Gravel, stones, turf and glass, %	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
Foreign matter, %	0.08	0.07	0.23	-	0.22	2.60	0.25	0.07	0.08	0.09	0.10	0.10	0.08	0.08
Other grain & unthreshed ears, %	0.30	0.41	0.39	-	0.71	1.20	0.55	0.26	0.29	0.35	0.36	0.55	0.22	0.33
Heat damaged kernels, %	0.00	0.00	0.00	-	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.02	0.01	0.00	-	0.04	0.00	0.02	0.07	0.06	0.05	0.04	0.02	0.02	0.05
Insect damaged kernels, %	0.14	0.24	0.31	-	0.30	0.80	0.28	0.39	0.43	0.54	0.57	0.66	4.14	0.53
Heavily frost damaged kernels, %	0.00	0.00	0.03	-	0.03	0.00	0.01	0.03	0.02	0.03	0.00	0.01	0.30	0.03
Sprouted kernels, %	0.20	0.11	0.21	-	0.05	0.16	0.11	0.05	0.06	0.05	0.05	0.13	2.12	0.09
Total damaged kernels, %	0.36	0.37	0.53	-	0.40	0.96	0.42	0.50	0.55	0.64	0.66	0.82	6.28	0.66
Combined deviations, %	3.09	3.09	3.67	-	6.36	12.02	4.94	2.27	2.40	2.80	2.64	4.94	9.96	2.89
Field fungi, %	0.06	0.07	0.11	-	0.07	0.00	0.07	0.08	0.12	0.11	0.14	0.19	0.10	0.12
Storage fungi, %	0.00	0.01	0.00	-	0.01	0.00	0.00	0.01	0.01	0.03	0.04	0.02	0.02	0.02
Ergot, %	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0	0	0	-	0	0	0	0	0	0	0	0	0	0
Noxious seeds (Argemone mexicana)	0	0	0	-	0	0	0	0	0	0	0	0	0	0
Live insects	No	No	No	-	No	No	No	No	No	No	No	No	No	No
Undesirable odour	No	No	No	-	No	No	No	No	No	No	No	No	No	No
M	B1	B2	В3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	4	7	3	-	12	1	27	26	25	21	11	15	2	100
BÜHLER EXTRACTION, %	75.3	73.7	73.5	-	72.9	72.3	73.5	75.2	75.4	75.6	74.7	74.6	72.3	75.1
FLOUR														
Colour, KJ	-0.4	0.4	0.5	-	0.8	0.9	0.5	-1.1	-1.3	-1.4	-1.5	-0.8	-1.0	-1.2
100g BAKING TEST														
Baking water absorption, %	61.0	58.9	59.4	-	59.2	60.6	59.5	61.7	60.3	59.6	58.7	59.8	60.5	60.3
Loaf volume, cm3	896	786	733	-	795	875	804	893	824	794	718	776	788	816
Evaluation	1	1	1	-	2	0	1	1	1	1	2	1	2	1
FARINOGRAM														
Water absorption, %	60.5	56.3	54.6	-	57.6	57.5	57.4	63.0	61.7	60.5	60.0	60.5	61.5	61.4
Development time, min	2.9	2.0	1.8	-	2.2	1.5	2.2	4.6	3.7	2.9	2.1	2.7	2.4	3.4
Stability, mm	8.1	6.0	4.4	-	6.9	4.4	6.5	7.2	6.3	5.7	4.5	5.6	6.2	6.1
Mixing tolerance index, BU	39	53	78	-	52	57	53	45	50	52	62	53	47	51

Country of origin				USA	<u> </u>				R	SA C	Crop A	Avera	age	
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	В4	UT	cow	Average
No. of samples	4	7	3	-	12	1	27	26	25	21	11	15	2	100
ALVEOGRAM														
Strength (S), cm	47.8	38.9	26.8	-	41.1	37.3	39.8	42.3	37.5	33.7	32.0	33.9	38.0	36.8
Stability (P), mm	98	84	59	-	89	97	86	88	87	82	87	80	95	85
Distensibility (L), mm	95	92	98	-	89	66	91	110	100	95	80	99	93	99
P/L	1.04	0.98	0.60	-	1.04	1.47	0.99	0.82	0.93	0.92	1.25	0.90	1.20	0.93
EXTENSOGRAM														
Strength, cm	119	102	102	-	118	-	111	94	80	75	72	80	98	82
Max. height, BU	490	442	435	-	515	-	479	331	323	315	328	327	383	326
Extensibility, mm	168	156	162	-	158	-	159	195	173	164	152	168	175	174
MIXOGRAM														
Peak time, min	3.7	4.5	3.5	-	4.2	4.7	4.1	2.4	2.5	2.6	2.9	2.7	2.9	2.6
Absorption, %	62.0	60.2	59.4	-	60.9	60.6	60.7	62.1	60.6	59.8	59.0	60.0	60.2	60.5
MYCOTOXINS														
Aflatoxin, ppb [max.value]				0.00 [<							0.00 [<			
Deoxynivalenol, ppm [max. value]				1.09 [2.							1.46 [2.			
Ochratoxin A, ppb [max. value]			5	5.31 [47	[.00]						0.17 [1.	40]		
No. of samples				9							30			

RSA WHEAT CROP QUALITY

RSA Crop Quality 2005/2006 and 2007/2008 Seasons

Country of origin	RSA Crop Average 2005/2006									rop A	vera	qe 20	007/2	008
Class and Grade bread wheat	B1	B2	В3	В4	UT	cow	Average	B1	B2	В3	В4	UT	cow	Average
No. of samples	178	104	85	21	69	23	480	64	137	131	70	54	24	480
WHEAT														
GRADING														
Protein (12% mb), %	13.37	12.04	11.34	10.44	12.30	13.07	12.43	12.48	11.42	10.59	9.58	10.99	11.66	11.03
Moisture, %	11.2	11.2	11.0	10.9	10.9	11.2	11.1	11.6	11.4	12.0	11.1	11.4	11.8	11.6
Falling number, sec	370	384	385	357	374	364	375	369	368	359	351	364	323	360
1000 Kernel mass (13% mb), g	35.5	37.0	36.6	37.8	34.4	32.6	35.8	38.9	38.7	39.1	39.7	36.4	38.1	38.7
Hlm (dirty), kg/hl	78.8	78.3	78.2	78.7	77.4	75.6	78.2	78.9	78.7	78.0	78.5	76.2	75.5	78.1
Screenings (<1,8mm), %	1.41	1.55	1.52	1.38	2.87	1.89	1.69	1.42	1.36	1.33	1.16	3.01	3.02	1.60
Gravel, stones, turf and glass, %	0.00	0.00	0.00	0.00	0.00	0.11	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.00
Foreign matter, %	0.09	0.11	0.12	0.11	0.12	0.27	0.12	0.05	0.05	0.05	0.07	0.08	0.19	0.06
Other grain & unthreshed ears, %	0.27	0.30	0.34	0.30	0.50	0.37	0.33	0.23	0.25	0.30	0.26	0.54	0.32	0.30
Heat damaged kernels, %	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Immature kernels, %	0.16	0.09	0.07	0.05	0.07	0.16	0.11	0.12	0.11	0.06	0.06	0.16	0.14	0.10
Insect damaged kernels, %	0.29	0.41	0.45	0.44	0.65	5.85	0.67	0.24	0.17	0.15	0.16	0.75	2.08	0.33
Heavily frost damaged kernels, %	0.00	0.03	0.00	0.00	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sprouted kernels, %	0.03	0.06	0.02	0.02	0.17	0.56	0.08	0.23	0.19	0.15	0.14	0.17	1.08	0.22
Total damaged kernels, %	0.48	0.56	0.57	0.51	0.90	6.89	0.88	0.59	0.47	0.36	0.35	1.08	3.30	0.65
Combined deviations, %	2.26	2.50	2.54	2.30	4.39	7.96	2.95	2.30	2.13	2.04	1.85	4.71	6.85	2.61
Field fungi, %	0.08	0.11	0.12	0.08	0.10	0.25	0.11	0.14	0.10	0.09	0.06	0.18	0.14	0.11
Storage fungi, %	0.01	0.01	0.01	0.00	0.01	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ergot, %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Noxious seeds (Crotolaria sp, Datura sp)	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Noxious seeds (Argemone mexicana)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Live insects	No	No	No	No	No	No	No	0	No	No	No	No	No	No
Undesirable odour	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	B1	B2	В3	B4	UT	cow	Average	B1	B2	B3	B4	UT	cow	Average
No. of samples	30	22	19	11	14	4	100	23	26	18	14	13	6	100
BÜHLER EXTRACTION, %	75.4	75.9	75.4	75.6	75.2	74.6	75.5	75.7	76.0	75.7	74.9	75.1	75.4	75.6
FLOUR														
Colour, KJ	-1.8	-1.9	-1.9	-1.8	-1.4	-0.3	-1.8	-1.7	-1.9	-2.1	-2.4	-1.7	-0.8	-1.9
100g BAKING TEST							•							
Baking water absorption, %	62.3	61	60.9	60.9	61.2	63.3	61.5	61.5	60.3	59.4	57.7	59.6	61.2	60.0
Loaf volume, cm3	951	912	874	820	895	970	906	892	857	802	704	800	873	827
Evaluation	0	0	0	1	0	1	0	1	1	1	2	1	1	1
FARINOGRAM														
Water absorption, %	63.1	62.6	61.6	61.7	61.9	62.0	62.3	62.3	61.0	60.2	59.3	59.8	61.0	60.8
Development time, min	6.0	4.9	4.2	4.1	4.7	5.8	5.0	4.8	3.8	2.9	2.0	3.0	4.4	3.5
Stability, mm	10.7	9.0	8.5	7.5	9.1	10.7	9.3	9.0	7.6	6.6	4.5	6.4	7.9	7.2
Mixing tolerance index, BU	33	37	36	43	35	32	36	37	41	44	58	46	43	44

RSA Crop Quality of 2005/2006 and 2007/2008 Seasons

Country of origin	R	SA C	rop A	Avera	ge 2	005/2	2006	R	SA C	rop A	vera	ge 2	007/2	2008
Class and Grade bread wheat	B1	B2	В3	B4	UT	cow	Average	B1	B2	В3	B4	UT	cow	Average
No. of samples	30	22	19	11	14	4	100	23	26	18	14	13	6	100
ALVEOGRAM														
Strength (S), cm	44.5	39.9	36.9	37.6	39.6	46.7	40.7	47.9	42.8	39.8	33.0	39.5	46.9	41.9
Stability (P), mm	84	82	80	86	80	73	82	92	86	89	96	86	83	89
Distensibility (L), mm	117	106	102	93	111	133	109	118	114	101	75	101	127	106
P/L	0.73	0.79	0.84	1.16	0.75	0.57	0.81	0.81	0.78	0.98	1.54	0.93	0.67	0.94
EXTENSOGRAM														
Strength, cm	117	105	98	96	110	137	108	106	98	93	77	97	114	97
Max. height, BU	372	356	357	354	377	425	366	377	371	384	371	388	392	378
Extensibility, mm	213	199	186	175	198	218	199	195	184	172	142	170	200	178
MIXOGRAM														
Peak time, min	2.4	2.5	2.5	2.6	2.5	2.5	2.5	2.6	2.6	2.9	3.0	2.8	2.8	2.8
Absorption, %	62.5	61.4	60.8	60.8	61.5	63.9	61.7	62.4	61.0	60.0	58.7	60.2	61.8	60.8
MYCOTOXINS														
Aflatoxin, ppb [max.value]				0.43 [7.	00]						0.33 [5.	00]		
Deoxynivalenol, ppm [max. value]				0.94 [1.	50]						1.36 [2.	70]		
Ochratoxin A, ppb [max. value]				0.09 [0.	67]						0.33 [2.	80]		
No. of samples				30							30			

